Solve for x
x=1
x=7
Graph
Share
Copied to clipboard
x\left(2x+1\right)+\left(x-2\right)\left(x+7\right)=5x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x.
2x^{2}+x+\left(x-2\right)\left(x+7\right)=5x\left(x-2\right)
Use the distributive property to multiply x by 2x+1.
2x^{2}+x+x^{2}+5x-14=5x\left(x-2\right)
Use the distributive property to multiply x-2 by x+7 and combine like terms.
3x^{2}+x+5x-14=5x\left(x-2\right)
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+6x-14=5x\left(x-2\right)
Combine x and 5x to get 6x.
3x^{2}+6x-14=5x^{2}-10x
Use the distributive property to multiply 5x by x-2.
3x^{2}+6x-14-5x^{2}=-10x
Subtract 5x^{2} from both sides.
-2x^{2}+6x-14=-10x
Combine 3x^{2} and -5x^{2} to get -2x^{2}.
-2x^{2}+6x-14+10x=0
Add 10x to both sides.
-2x^{2}+16x-14=0
Combine 6x and 10x to get 16x.
-x^{2}+8x-7=0
Divide both sides by 2.
a+b=8 ab=-\left(-7\right)=7
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
a=7 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-x^{2}+7x\right)+\left(x-7\right)
Rewrite -x^{2}+8x-7 as \left(-x^{2}+7x\right)+\left(x-7\right).
-x\left(x-7\right)+x-7
Factor out -x in -x^{2}+7x.
\left(x-7\right)\left(-x+1\right)
Factor out common term x-7 by using distributive property.
x=7 x=1
To find equation solutions, solve x-7=0 and -x+1=0.
x\left(2x+1\right)+\left(x-2\right)\left(x+7\right)=5x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x.
2x^{2}+x+\left(x-2\right)\left(x+7\right)=5x\left(x-2\right)
Use the distributive property to multiply x by 2x+1.
2x^{2}+x+x^{2}+5x-14=5x\left(x-2\right)
Use the distributive property to multiply x-2 by x+7 and combine like terms.
3x^{2}+x+5x-14=5x\left(x-2\right)
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+6x-14=5x\left(x-2\right)
Combine x and 5x to get 6x.
3x^{2}+6x-14=5x^{2}-10x
Use the distributive property to multiply 5x by x-2.
3x^{2}+6x-14-5x^{2}=-10x
Subtract 5x^{2} from both sides.
-2x^{2}+6x-14=-10x
Combine 3x^{2} and -5x^{2} to get -2x^{2}.
-2x^{2}+6x-14+10x=0
Add 10x to both sides.
-2x^{2}+16x-14=0
Combine 6x and 10x to get 16x.
x=\frac{-16±\sqrt{16^{2}-4\left(-2\right)\left(-14\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 16 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-2\right)\left(-14\right)}}{2\left(-2\right)}
Square 16.
x=\frac{-16±\sqrt{256+8\left(-14\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-16±\sqrt{256-112}}{2\left(-2\right)}
Multiply 8 times -14.
x=\frac{-16±\sqrt{144}}{2\left(-2\right)}
Add 256 to -112.
x=\frac{-16±12}{2\left(-2\right)}
Take the square root of 144.
x=\frac{-16±12}{-4}
Multiply 2 times -2.
x=-\frac{4}{-4}
Now solve the equation x=\frac{-16±12}{-4} when ± is plus. Add -16 to 12.
x=1
Divide -4 by -4.
x=-\frac{28}{-4}
Now solve the equation x=\frac{-16±12}{-4} when ± is minus. Subtract 12 from -16.
x=7
Divide -28 by -4.
x=1 x=7
The equation is now solved.
x\left(2x+1\right)+\left(x-2\right)\left(x+7\right)=5x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x.
2x^{2}+x+\left(x-2\right)\left(x+7\right)=5x\left(x-2\right)
Use the distributive property to multiply x by 2x+1.
2x^{2}+x+x^{2}+5x-14=5x\left(x-2\right)
Use the distributive property to multiply x-2 by x+7 and combine like terms.
3x^{2}+x+5x-14=5x\left(x-2\right)
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+6x-14=5x\left(x-2\right)
Combine x and 5x to get 6x.
3x^{2}+6x-14=5x^{2}-10x
Use the distributive property to multiply 5x by x-2.
3x^{2}+6x-14-5x^{2}=-10x
Subtract 5x^{2} from both sides.
-2x^{2}+6x-14=-10x
Combine 3x^{2} and -5x^{2} to get -2x^{2}.
-2x^{2}+6x-14+10x=0
Add 10x to both sides.
-2x^{2}+16x-14=0
Combine 6x and 10x to get 16x.
-2x^{2}+16x=14
Add 14 to both sides. Anything plus zero gives itself.
\frac{-2x^{2}+16x}{-2}=\frac{14}{-2}
Divide both sides by -2.
x^{2}+\frac{16}{-2}x=\frac{14}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-8x=\frac{14}{-2}
Divide 16 by -2.
x^{2}-8x=-7
Divide 14 by -2.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-7+16
Square -4.
x^{2}-8x+16=9
Add -7 to 16.
\left(x-4\right)^{2}=9
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-4=3 x-4=-3
Simplify.
x=7 x=1
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}