Solve for k
k=-\frac{x^{2}+x+1}{1-x}
x\neq 1
Solve for x (complex solution)
x=\frac{\sqrt{k^{2}-6k-3}+k-1}{2}
x=\frac{-\sqrt{k^{2}-6k-3}+k-1}{2}
Solve for x
x=\frac{\sqrt{k^{2}-6k-3}+k-1}{2}
x=\frac{-\sqrt{k^{2}-6k-3}+k-1}{2}\text{, }k\geq 2\sqrt{3}+3\text{ or }k\leq 3-2\sqrt{3}
Graph
Share
Copied to clipboard
2x+1=-\left(x-1\right)x+\left(x-1\right)k
Multiply both sides of the equation by x-1.
2x+1=-\left(x^{2}-x\right)+\left(x-1\right)k
Use the distributive property to multiply x-1 by x.
2x+1=-x^{2}+x+\left(x-1\right)k
To find the opposite of x^{2}-x, find the opposite of each term.
2x+1=-x^{2}+x+xk-k
Use the distributive property to multiply x-1 by k.
-x^{2}+x+xk-k=2x+1
Swap sides so that all variable terms are on the left hand side.
x+xk-k=2x+1+x^{2}
Add x^{2} to both sides.
xk-k=2x+1+x^{2}-x
Subtract x from both sides.
xk-k=x+1+x^{2}
Combine 2x and -x to get x.
\left(x-1\right)k=x+1+x^{2}
Combine all terms containing k.
\left(x-1\right)k=x^{2}+x+1
The equation is in standard form.
\frac{\left(x-1\right)k}{x-1}=\frac{x^{2}+x+1}{x-1}
Divide both sides by x-1.
k=\frac{x^{2}+x+1}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}