Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
2\left(2x+1\right)-2x\left(x+1\right)=2x\times 2-\left(x-1\right)\times 2x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2x.
4x+2-2x\left(x+1\right)=2x\times 2-\left(x-1\right)\times 2x
Use the distributive property to multiply 2 by 2x+1.
4x+2-2x^{2}-2x=2x\times 2-\left(x-1\right)\times 2x
Use the distributive property to multiply -2x by x+1.
2x+2-2x^{2}=2x\times 2-\left(x-1\right)\times 2x
Combine 4x and -2x to get 2x.
2x+2-2x^{2}=4x-\left(x-1\right)\times 2x
Multiply 2 and 2 to get 4.
2x+2-2x^{2}=4x-2\left(x-1\right)x
Multiply -1 and 2 to get -2.
2x+2-2x^{2}=4x+\left(-2x+2\right)x
Use the distributive property to multiply -2 by x-1.
2x+2-2x^{2}=4x-2x^{2}+2x
Use the distributive property to multiply -2x+2 by x.
2x+2-2x^{2}=6x-2x^{2}
Combine 4x and 2x to get 6x.
2x+2-2x^{2}-6x=-2x^{2}
Subtract 6x from both sides.
-4x+2-2x^{2}=-2x^{2}
Combine 2x and -6x to get -4x.
-4x+2-2x^{2}+2x^{2}=0
Add 2x^{2} to both sides.
-4x+2=0
Combine -2x^{2} and 2x^{2} to get 0.
-4x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-2}{-4}
Divide both sides by -4.
x=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}