Solve for x
x=\frac{\sqrt{13}-3}{2}\approx 0.302775638
x=\frac{-\sqrt{13}-3}{2}\approx -3.302775638
Graph
Share
Copied to clipboard
2x+1=-5x\left(x+3\right)+\left(x+3\right)\times 2
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by x+3.
2x+1=-5x^{2}-15x+\left(x+3\right)\times 2
Use the distributive property to multiply -5x by x+3.
2x+1=-5x^{2}-15x+2x+6
Use the distributive property to multiply x+3 by 2.
2x+1=-5x^{2}-13x+6
Combine -15x and 2x to get -13x.
2x+1+5x^{2}=-13x+6
Add 5x^{2} to both sides.
2x+1+5x^{2}+13x=6
Add 13x to both sides.
15x+1+5x^{2}=6
Combine 2x and 13x to get 15x.
15x+1+5x^{2}-6=0
Subtract 6 from both sides.
15x-5+5x^{2}=0
Subtract 6 from 1 to get -5.
5x^{2}+15x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\times 5\left(-5\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 15 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 5\left(-5\right)}}{2\times 5}
Square 15.
x=\frac{-15±\sqrt{225-20\left(-5\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-15±\sqrt{225+100}}{2\times 5}
Multiply -20 times -5.
x=\frac{-15±\sqrt{325}}{2\times 5}
Add 225 to 100.
x=\frac{-15±5\sqrt{13}}{2\times 5}
Take the square root of 325.
x=\frac{-15±5\sqrt{13}}{10}
Multiply 2 times 5.
x=\frac{5\sqrt{13}-15}{10}
Now solve the equation x=\frac{-15±5\sqrt{13}}{10} when ± is plus. Add -15 to 5\sqrt{13}.
x=\frac{\sqrt{13}-3}{2}
Divide -15+5\sqrt{13} by 10.
x=\frac{-5\sqrt{13}-15}{10}
Now solve the equation x=\frac{-15±5\sqrt{13}}{10} when ± is minus. Subtract 5\sqrt{13} from -15.
x=\frac{-\sqrt{13}-3}{2}
Divide -15-5\sqrt{13} by 10.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
The equation is now solved.
2x+1=-5x\left(x+3\right)+\left(x+3\right)\times 2
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by x+3.
2x+1=-5x^{2}-15x+\left(x+3\right)\times 2
Use the distributive property to multiply -5x by x+3.
2x+1=-5x^{2}-15x+2x+6
Use the distributive property to multiply x+3 by 2.
2x+1=-5x^{2}-13x+6
Combine -15x and 2x to get -13x.
2x+1+5x^{2}=-13x+6
Add 5x^{2} to both sides.
2x+1+5x^{2}+13x=6
Add 13x to both sides.
15x+1+5x^{2}=6
Combine 2x and 13x to get 15x.
15x+5x^{2}=6-1
Subtract 1 from both sides.
15x+5x^{2}=5
Subtract 1 from 6 to get 5.
5x^{2}+15x=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}+15x}{5}=\frac{5}{5}
Divide both sides by 5.
x^{2}+\frac{15}{5}x=\frac{5}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+3x=\frac{5}{5}
Divide 15 by 5.
x^{2}+3x=1
Divide 5 by 5.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=1+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=1+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{13}{4}
Add 1 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{13}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{13}}{2} x+\frac{3}{2}=-\frac{\sqrt{13}}{2}
Simplify.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}