Solve for x
x = -\frac{79}{5} = -15\frac{4}{5} = -15.8
Graph
Share
Copied to clipboard
6\left(2x+1\right)-6\left(2x+5\right)=60+5\left(x-1\right)
Multiply both sides of the equation by 30, the least common multiple of 5,6.
12x+6-6\left(2x+5\right)=60+5\left(x-1\right)
Use the distributive property to multiply 6 by 2x+1.
12x+6-12x-30=60+5\left(x-1\right)
Use the distributive property to multiply -6 by 2x+5.
6-30=60+5\left(x-1\right)
Combine 12x and -12x to get 0.
-24=60+5\left(x-1\right)
Subtract 30 from 6 to get -24.
-24=60+5x-5
Use the distributive property to multiply 5 by x-1.
-24=55+5x
Subtract 5 from 60 to get 55.
55+5x=-24
Swap sides so that all variable terms are on the left hand side.
5x=-24-55
Subtract 55 from both sides.
5x=-79
Subtract 55 from -24 to get -79.
x=\frac{-79}{5}
Divide both sides by 5.
x=-\frac{79}{5}
Fraction \frac{-79}{5} can be rewritten as -\frac{79}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}