Solve for x
x = \frac{\sqrt{129} + 13}{8} \approx 3.044727086
x=\frac{13-\sqrt{129}}{8}\approx 0.205272914
Graph
Share
Copied to clipboard
3\left(2x+1\right)+2\left(2x-1\right)=6\left(2x-1\right)\left(x-\left(1+\frac{1}{3}x\right)\right)
Multiply both sides of the equation by 12, the least common multiple of 4,6,2,3.
6x+3+2\left(2x-1\right)=6\left(2x-1\right)\left(x-\left(1+\frac{1}{3}x\right)\right)
Use the distributive property to multiply 3 by 2x+1.
6x+3+4x-2=6\left(2x-1\right)\left(x-\left(1+\frac{1}{3}x\right)\right)
Use the distributive property to multiply 2 by 2x-1.
10x+3-2=6\left(2x-1\right)\left(x-\left(1+\frac{1}{3}x\right)\right)
Combine 6x and 4x to get 10x.
10x+1=6\left(2x-1\right)\left(x-\left(1+\frac{1}{3}x\right)\right)
Subtract 2 from 3 to get 1.
10x+1=6\left(2x-1\right)\left(x-1-\frac{1}{3}x\right)
To find the opposite of 1+\frac{1}{3}x, find the opposite of each term.
10x+1=6\left(2x-1\right)\left(\frac{2}{3}x-1\right)
Combine x and -\frac{1}{3}x to get \frac{2}{3}x.
10x+1=\left(12x-6\right)\left(\frac{2}{3}x-1\right)
Use the distributive property to multiply 6 by 2x-1.
10x+1=12x\times \frac{2}{3}x-12x-6\times \frac{2}{3}x+6
Apply the distributive property by multiplying each term of 12x-6 by each term of \frac{2}{3}x-1.
10x+1=12x^{2}\times \frac{2}{3}-12x-6\times \frac{2}{3}x+6
Multiply x and x to get x^{2}.
10x+1=\frac{12\times 2}{3}x^{2}-12x-6\times \frac{2}{3}x+6
Express 12\times \frac{2}{3} as a single fraction.
10x+1=\frac{24}{3}x^{2}-12x-6\times \frac{2}{3}x+6
Multiply 12 and 2 to get 24.
10x+1=8x^{2}-12x-6\times \frac{2}{3}x+6
Divide 24 by 3 to get 8.
10x+1=8x^{2}-12x+\frac{-6\times 2}{3}x+6
Express -6\times \frac{2}{3} as a single fraction.
10x+1=8x^{2}-12x+\frac{-12}{3}x+6
Multiply -6 and 2 to get -12.
10x+1=8x^{2}-12x-4x+6
Divide -12 by 3 to get -4.
10x+1=8x^{2}-16x+6
Combine -12x and -4x to get -16x.
10x+1-8x^{2}=-16x+6
Subtract 8x^{2} from both sides.
10x+1-8x^{2}+16x=6
Add 16x to both sides.
26x+1-8x^{2}=6
Combine 10x and 16x to get 26x.
26x+1-8x^{2}-6=0
Subtract 6 from both sides.
26x-5-8x^{2}=0
Subtract 6 from 1 to get -5.
-8x^{2}+26x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-26±\sqrt{26^{2}-4\left(-8\right)\left(-5\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 26 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\left(-8\right)\left(-5\right)}}{2\left(-8\right)}
Square 26.
x=\frac{-26±\sqrt{676+32\left(-5\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-26±\sqrt{676-160}}{2\left(-8\right)}
Multiply 32 times -5.
x=\frac{-26±\sqrt{516}}{2\left(-8\right)}
Add 676 to -160.
x=\frac{-26±2\sqrt{129}}{2\left(-8\right)}
Take the square root of 516.
x=\frac{-26±2\sqrt{129}}{-16}
Multiply 2 times -8.
x=\frac{2\sqrt{129}-26}{-16}
Now solve the equation x=\frac{-26±2\sqrt{129}}{-16} when ± is plus. Add -26 to 2\sqrt{129}.
x=\frac{13-\sqrt{129}}{8}
Divide -26+2\sqrt{129} by -16.
x=\frac{-2\sqrt{129}-26}{-16}
Now solve the equation x=\frac{-26±2\sqrt{129}}{-16} when ± is minus. Subtract 2\sqrt{129} from -26.
x=\frac{\sqrt{129}+13}{8}
Divide -26-2\sqrt{129} by -16.
x=\frac{13-\sqrt{129}}{8} x=\frac{\sqrt{129}+13}{8}
The equation is now solved.
3\left(2x+1\right)+2\left(2x-1\right)=6\left(2x-1\right)\left(x-\left(1+\frac{1}{3}x\right)\right)
Multiply both sides of the equation by 12, the least common multiple of 4,6,2,3.
6x+3+2\left(2x-1\right)=6\left(2x-1\right)\left(x-\left(1+\frac{1}{3}x\right)\right)
Use the distributive property to multiply 3 by 2x+1.
6x+3+4x-2=6\left(2x-1\right)\left(x-\left(1+\frac{1}{3}x\right)\right)
Use the distributive property to multiply 2 by 2x-1.
10x+3-2=6\left(2x-1\right)\left(x-\left(1+\frac{1}{3}x\right)\right)
Combine 6x and 4x to get 10x.
10x+1=6\left(2x-1\right)\left(x-\left(1+\frac{1}{3}x\right)\right)
Subtract 2 from 3 to get 1.
10x+1=6\left(2x-1\right)\left(x-1-\frac{1}{3}x\right)
To find the opposite of 1+\frac{1}{3}x, find the opposite of each term.
10x+1=6\left(2x-1\right)\left(\frac{2}{3}x-1\right)
Combine x and -\frac{1}{3}x to get \frac{2}{3}x.
10x+1=\left(12x-6\right)\left(\frac{2}{3}x-1\right)
Use the distributive property to multiply 6 by 2x-1.
10x+1=12x\times \frac{2}{3}x-12x-6\times \frac{2}{3}x+6
Apply the distributive property by multiplying each term of 12x-6 by each term of \frac{2}{3}x-1.
10x+1=12x^{2}\times \frac{2}{3}-12x-6\times \frac{2}{3}x+6
Multiply x and x to get x^{2}.
10x+1=\frac{12\times 2}{3}x^{2}-12x-6\times \frac{2}{3}x+6
Express 12\times \frac{2}{3} as a single fraction.
10x+1=\frac{24}{3}x^{2}-12x-6\times \frac{2}{3}x+6
Multiply 12 and 2 to get 24.
10x+1=8x^{2}-12x-6\times \frac{2}{3}x+6
Divide 24 by 3 to get 8.
10x+1=8x^{2}-12x+\frac{-6\times 2}{3}x+6
Express -6\times \frac{2}{3} as a single fraction.
10x+1=8x^{2}-12x+\frac{-12}{3}x+6
Multiply -6 and 2 to get -12.
10x+1=8x^{2}-12x-4x+6
Divide -12 by 3 to get -4.
10x+1=8x^{2}-16x+6
Combine -12x and -4x to get -16x.
10x+1-8x^{2}=-16x+6
Subtract 8x^{2} from both sides.
10x+1-8x^{2}+16x=6
Add 16x to both sides.
26x+1-8x^{2}=6
Combine 10x and 16x to get 26x.
26x-8x^{2}=6-1
Subtract 1 from both sides.
26x-8x^{2}=5
Subtract 1 from 6 to get 5.
-8x^{2}+26x=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+26x}{-8}=\frac{5}{-8}
Divide both sides by -8.
x^{2}+\frac{26}{-8}x=\frac{5}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{13}{4}x=\frac{5}{-8}
Reduce the fraction \frac{26}{-8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{13}{4}x=-\frac{5}{8}
Divide 5 by -8.
x^{2}-\frac{13}{4}x+\left(-\frac{13}{8}\right)^{2}=-\frac{5}{8}+\left(-\frac{13}{8}\right)^{2}
Divide -\frac{13}{4}, the coefficient of the x term, by 2 to get -\frac{13}{8}. Then add the square of -\frac{13}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{4}x+\frac{169}{64}=-\frac{5}{8}+\frac{169}{64}
Square -\frac{13}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{4}x+\frac{169}{64}=\frac{129}{64}
Add -\frac{5}{8} to \frac{169}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{8}\right)^{2}=\frac{129}{64}
Factor x^{2}-\frac{13}{4}x+\frac{169}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{8}\right)^{2}}=\sqrt{\frac{129}{64}}
Take the square root of both sides of the equation.
x-\frac{13}{8}=\frac{\sqrt{129}}{8} x-\frac{13}{8}=-\frac{\sqrt{129}}{8}
Simplify.
x=\frac{\sqrt{129}+13}{8} x=\frac{13-\sqrt{129}}{8}
Add \frac{13}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}