Solve for x
x\geq -\frac{13}{8}
Graph
Share
Copied to clipboard
2\left(2x+1\right)-3\left(4x+5\right)\leq 0
Multiply both sides of the equation by 6, the least common multiple of 3,2. Since 6 is positive, the inequality direction remains the same.
4x+2-3\left(4x+5\right)\leq 0
Use the distributive property to multiply 2 by 2x+1.
4x+2-12x-15\leq 0
Use the distributive property to multiply -3 by 4x+5.
-8x+2-15\leq 0
Combine 4x and -12x to get -8x.
-8x-13\leq 0
Subtract 15 from 2 to get -13.
-8x\leq 13
Add 13 to both sides. Anything plus zero gives itself.
x\geq -\frac{13}{8}
Divide both sides by -8. Since -8 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}