Solve for x
x=-\frac{4y-23}{6y+11}
y\neq -\frac{11}{6}
Solve for y
y=\frac{23-11x}{2\left(3x+2\right)}
x\neq -\frac{2}{3}
Graph
Share
Copied to clipboard
4\left(2x+1\right)+3\left(x-5\right)=12-2\left(3x+2\right)y
Multiply both sides of the equation by 12, the least common multiple of 3,4,6.
8x+4+3\left(x-5\right)=12-2\left(3x+2\right)y
Use the distributive property to multiply 4 by 2x+1.
8x+4+3x-15=12-2\left(3x+2\right)y
Use the distributive property to multiply 3 by x-5.
11x+4-15=12-2\left(3x+2\right)y
Combine 8x and 3x to get 11x.
11x-11=12-2\left(3x+2\right)y
Subtract 15 from 4 to get -11.
11x-11+2\left(3x+2\right)y=12
Add 2\left(3x+2\right)y to both sides.
11x-11+\left(6x+4\right)y=12
Use the distributive property to multiply 2 by 3x+2.
11x-11+6xy+4y=12
Use the distributive property to multiply 6x+4 by y.
11x+6xy+4y=12+11
Add 11 to both sides.
11x+6xy+4y=23
Add 12 and 11 to get 23.
11x+6xy=23-4y
Subtract 4y from both sides.
\left(11+6y\right)x=23-4y
Combine all terms containing x.
\left(6y+11\right)x=23-4y
The equation is in standard form.
\frac{\left(6y+11\right)x}{6y+11}=\frac{23-4y}{6y+11}
Divide both sides by 11+6y.
x=\frac{23-4y}{6y+11}
Dividing by 11+6y undoes the multiplication by 11+6y.
4\left(2x+1\right)+3\left(x-5\right)=12-2\left(3x+2\right)y
Multiply both sides of the equation by 12, the least common multiple of 3,4,6.
8x+4+3\left(x-5\right)=12-2\left(3x+2\right)y
Use the distributive property to multiply 4 by 2x+1.
8x+4+3x-15=12-2\left(3x+2\right)y
Use the distributive property to multiply 3 by x-5.
11x+4-15=12-2\left(3x+2\right)y
Combine 8x and 3x to get 11x.
11x-11=12-2\left(3x+2\right)y
Subtract 15 from 4 to get -11.
12-2\left(3x+2\right)y=11x-11
Swap sides so that all variable terms are on the left hand side.
12+\left(-6x-4\right)y=11x-11
Use the distributive property to multiply -2 by 3x+2.
12-6xy-4y=11x-11
Use the distributive property to multiply -6x-4 by y.
-6xy-4y=11x-11-12
Subtract 12 from both sides.
-6xy-4y=11x-23
Subtract 12 from -11 to get -23.
\left(-6x-4\right)y=11x-23
Combine all terms containing y.
\frac{\left(-6x-4\right)y}{-6x-4}=\frac{11x-23}{-6x-4}
Divide both sides by -6x-4.
y=\frac{11x-23}{-6x-4}
Dividing by -6x-4 undoes the multiplication by -6x-4.
y=-\frac{11x-23}{2\left(3x+2\right)}
Divide 11x-23 by -6x-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}