Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(2x+1\right)\left(x+3\right)}{\left(2x^{2}+x-15\right)\left(6x^{2}-x-2\right)}
Divide \frac{2x+1}{2x^{2}+x-15} by \frac{6x^{2}-x-2}{x+3} by multiplying \frac{2x+1}{2x^{2}+x-15} by the reciprocal of \frac{6x^{2}-x-2}{x+3}.
\frac{\left(x+3\right)\left(2x+1\right)}{\left(2x-5\right)\left(3x-2\right)\left(x+3\right)\left(2x+1\right)}
Factor the expressions that are not already factored.
\frac{1}{\left(2x-5\right)\left(3x-2\right)}
Cancel out \left(x+3\right)\left(2x+1\right) in both numerator and denominator.
\frac{1}{6x^{2}-19x+10}
Expand the expression.
\frac{\left(2x+1\right)\left(x+3\right)}{\left(2x^{2}+x-15\right)\left(6x^{2}-x-2\right)}
Divide \frac{2x+1}{2x^{2}+x-15} by \frac{6x^{2}-x-2}{x+3} by multiplying \frac{2x+1}{2x^{2}+x-15} by the reciprocal of \frac{6x^{2}-x-2}{x+3}.
\frac{\left(x+3\right)\left(2x+1\right)}{\left(2x-5\right)\left(3x-2\right)\left(x+3\right)\left(2x+1\right)}
Factor the expressions that are not already factored.
\frac{1}{\left(2x-5\right)\left(3x-2\right)}
Cancel out \left(x+3\right)\left(2x+1\right) in both numerator and denominator.
\frac{1}{6x^{2}-19x+10}
Expand the expression.