Solve for x
x<\frac{15}{2}
Graph
Share
Copied to clipboard
3\left(2x+1\right)-12<6x-2\left(x-3\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
6x+3-12<6x-2\left(x-3\right)
Use the distributive property to multiply 3 by 2x+1.
6x-9<6x-2\left(x-3\right)
Subtract 12 from 3 to get -9.
6x-9<6x-2x+6
Use the distributive property to multiply -2 by x-3.
6x-9<4x+6
Combine 6x and -2x to get 4x.
6x-9-4x<6
Subtract 4x from both sides.
2x-9<6
Combine 6x and -4x to get 2x.
2x<6+9
Add 9 to both sides.
2x<15
Add 6 and 9 to get 15.
x<\frac{15}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}