Solve for x
x<\frac{1}{2}
Graph
Share
Copied to clipboard
2x+1-\left(1-2x\right)<2
Multiply both sides of the equation by 2. Since 2 is positive, the inequality direction remains the same.
2x+1-1-\left(-2x\right)<2
To find the opposite of 1-2x, find the opposite of each term.
2x+1-1+2x<2
The opposite of -2x is 2x.
2x+2x<2
Subtract 1 from 1 to get 0.
4x<2
Combine 2x and 2x to get 4x.
x<\frac{2}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
x<\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}