Solve for x
x=\frac{\sqrt{15}-\sqrt{5}}{3}\approx 0.545638456
Graph
Share
Copied to clipboard
2\times 3^{\frac{1}{2}}\left(2x+\sqrt{5}\right)-3^{\frac{1}{2}}\left(x-2\sqrt{5}\right)=\sqrt{5}\left(\sqrt{27}+3\right)
Multiply both sides of the equation by 6.
2\times 3^{\frac{1}{2}}\times 2x+2\times 3^{\frac{1}{2}}\sqrt{5}-3^{\frac{1}{2}}\left(x-2\sqrt{5}\right)=\sqrt{5}\left(\sqrt{27}+3\right)
Use the distributive property to multiply 2\times 3^{\frac{1}{2}} by 2x+\sqrt{5}.
4\times 3^{\frac{1}{2}}x+2\times 3^{\frac{1}{2}}\sqrt{5}-3^{\frac{1}{2}}\left(x-2\sqrt{5}\right)=\sqrt{5}\left(\sqrt{27}+3\right)
Multiply 2 and 2 to get 4.
4\times 3^{\frac{1}{2}}x+2\times 3^{\frac{1}{2}}\sqrt{5}-\left(3^{\frac{1}{2}}x+3^{\frac{1}{2}}\left(-2\right)\sqrt{5}\right)=\sqrt{5}\left(\sqrt{27}+3\right)
Use the distributive property to multiply 3^{\frac{1}{2}} by x-2\sqrt{5}.
4\times 3^{\frac{1}{2}}x+2\times 3^{\frac{1}{2}}\sqrt{5}-3^{\frac{1}{2}}x-3^{\frac{1}{2}}\left(-2\right)\sqrt{5}=\sqrt{5}\left(\sqrt{27}+3\right)
To find the opposite of 3^{\frac{1}{2}}x+3^{\frac{1}{2}}\left(-2\right)\sqrt{5}, find the opposite of each term.
4\times 3^{\frac{1}{2}}x+2\times 3^{\frac{1}{2}}\sqrt{5}-3^{\frac{1}{2}}x+2\times 3^{\frac{1}{2}}\sqrt{5}=\sqrt{5}\left(\sqrt{27}+3\right)
Multiply -1 and -2 to get 2.
3\times 3^{\frac{1}{2}}x+2\times 3^{\frac{1}{2}}\sqrt{5}+2\times 3^{\frac{1}{2}}\sqrt{5}=\sqrt{5}\left(\sqrt{27}+3\right)
Combine 4\times 3^{\frac{1}{2}}x and -3^{\frac{1}{2}}x to get 3\times 3^{\frac{1}{2}}x.
3\times 3^{\frac{1}{2}}x+4\times 3^{\frac{1}{2}}\sqrt{5}=\sqrt{5}\left(\sqrt{27}+3\right)
Combine 2\times 3^{\frac{1}{2}}\sqrt{5} and 2\times 3^{\frac{1}{2}}\sqrt{5} to get 4\times 3^{\frac{1}{2}}\sqrt{5}.
3\times 3^{\frac{1}{2}}x+4\times 3^{\frac{1}{2}}\sqrt{5}=\sqrt{5}\left(3\sqrt{3}+3\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
3\times 3^{\frac{1}{2}}x+4\times 3^{\frac{1}{2}}\sqrt{5}=3\sqrt{5}\sqrt{3}+3\sqrt{5}
Use the distributive property to multiply \sqrt{5} by 3\sqrt{3}+3.
3\times 3^{\frac{1}{2}}x+4\times 3^{\frac{1}{2}}\sqrt{5}=3\sqrt{15}+3\sqrt{5}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
3^{\frac{3}{2}}x+4\times 3^{\frac{1}{2}}\sqrt{5}=3\sqrt{15}+3\sqrt{5}
To multiply powers of the same base, add their exponents. Add 1 and \frac{1}{2} to get \frac{3}{2}.
3^{\frac{3}{2}}x=3\sqrt{15}+3\sqrt{5}-4\times 3^{\frac{1}{2}}\sqrt{5}
Subtract 4\times 3^{\frac{1}{2}}\sqrt{5} from both sides.
3^{\frac{3}{2}}x=3\sqrt{5}+3\sqrt{15}-4\sqrt{3}\sqrt{5}
Reorder the terms.
3^{\frac{3}{2}}x=3\sqrt{5}+3\sqrt{15}-4\sqrt{15}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
3^{\frac{3}{2}}x=3\sqrt{5}-\sqrt{15}
Combine 3\sqrt{15} and -4\sqrt{15} to get -\sqrt{15}.
3\sqrt{3}x=3\sqrt{5}-\sqrt{15}
The equation is in standard form.
\frac{3\sqrt{3}x}{3\sqrt{3}}=\frac{3\sqrt{5}-\sqrt{15}}{3\sqrt{3}}
Divide both sides by 3\times 3^{\frac{1}{2}}.
x=\frac{3\sqrt{5}-\sqrt{15}}{3\sqrt{3}}
Dividing by 3\times 3^{\frac{1}{2}} undoes the multiplication by 3\times 3^{\frac{1}{2}}.
x=\frac{\sqrt{15}-\sqrt{5}}{3}
Divide 3\sqrt{5}-\sqrt{15} by 3\times 3^{\frac{1}{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}