Solve for w
w=\frac{x\left(x+420\right)}{4\left(x+20\right)}
x\neq 0\text{ and }x\neq -20
Solve for x
\left\{\begin{matrix}\\x=2\left(-\sqrt{w^{2}-190w+11025}+w-105\right)\text{, }&\text{unconditionally}\\x=2\left(\sqrt{w^{2}-190w+11025}+w-105\right)\text{, }&w\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(2x+40\right)\times 2w=2x\times 200+2x\left(x+20\right)\times \frac{1}{2}
Multiply both sides of the equation by 2x\left(x+20\right), the least common multiple of x,x+20,2.
\left(4x+80\right)w=2x\times 200+2x\left(x+20\right)\times \frac{1}{2}
Use the distributive property to multiply 2x+40 by 2.
4xw+80w=2x\times 200+2x\left(x+20\right)\times \frac{1}{2}
Use the distributive property to multiply 4x+80 by w.
4xw+80w=400x+2x\left(x+20\right)\times \frac{1}{2}
Multiply 2 and 200 to get 400.
4xw+80w=400x+x\left(x+20\right)
Multiply 2 and \frac{1}{2} to get 1.
4xw+80w=400x+x^{2}+20x
Use the distributive property to multiply x by x+20.
4xw+80w=420x+x^{2}
Combine 400x and 20x to get 420x.
\left(4x+80\right)w=420x+x^{2}
Combine all terms containing w.
\left(4x+80\right)w=x^{2}+420x
The equation is in standard form.
\frac{\left(4x+80\right)w}{4x+80}=\frac{x\left(x+420\right)}{4x+80}
Divide both sides by 80+4x.
w=\frac{x\left(x+420\right)}{4x+80}
Dividing by 80+4x undoes the multiplication by 80+4x.
w=\frac{x\left(x+420\right)}{4\left(x+20\right)}
Divide x\left(420+x\right) by 80+4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}