Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. u
Tick mark Image

Similar Problems from Web Search

Share

\frac{2u}{\left(u-1\right)\left(u+4\right)}+\frac{1}{u-1}
Factor u^{2}+3u-4.
\frac{2u}{\left(u-1\right)\left(u+4\right)}+\frac{u+4}{\left(u-1\right)\left(u+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(u-1\right)\left(u+4\right) and u-1 is \left(u-1\right)\left(u+4\right). Multiply \frac{1}{u-1} times \frac{u+4}{u+4}.
\frac{2u+u+4}{\left(u-1\right)\left(u+4\right)}
Since \frac{2u}{\left(u-1\right)\left(u+4\right)} and \frac{u+4}{\left(u-1\right)\left(u+4\right)} have the same denominator, add them by adding their numerators.
\frac{3u+4}{\left(u-1\right)\left(u+4\right)}
Combine like terms in 2u+u+4.
\frac{3u+4}{u^{2}+3u-4}
Expand \left(u-1\right)\left(u+4\right).
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{2u}{\left(u-1\right)\left(u+4\right)}+\frac{1}{u-1})
Factor u^{2}+3u-4.
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{2u}{\left(u-1\right)\left(u+4\right)}+\frac{u+4}{\left(u-1\right)\left(u+4\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(u-1\right)\left(u+4\right) and u-1 is \left(u-1\right)\left(u+4\right). Multiply \frac{1}{u-1} times \frac{u+4}{u+4}.
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{2u+u+4}{\left(u-1\right)\left(u+4\right)})
Since \frac{2u}{\left(u-1\right)\left(u+4\right)} and \frac{u+4}{\left(u-1\right)\left(u+4\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{3u+4}{\left(u-1\right)\left(u+4\right)})
Combine like terms in 2u+u+4.
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{3u+4}{u^{2}+3u-4})
Use the distributive property to multiply u-1 by u+4 and combine like terms.
\frac{\left(u^{2}+3u^{1}-4\right)\frac{\mathrm{d}}{\mathrm{d}u}(3u^{1}+4)-\left(3u^{1}+4\right)\frac{\mathrm{d}}{\mathrm{d}u}(u^{2}+3u^{1}-4)}{\left(u^{2}+3u^{1}-4\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(u^{2}+3u^{1}-4\right)\times 3u^{1-1}-\left(3u^{1}+4\right)\left(2u^{2-1}+3u^{1-1}\right)}{\left(u^{2}+3u^{1}-4\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(u^{2}+3u^{1}-4\right)\times 3u^{0}-\left(3u^{1}+4\right)\left(2u^{1}+3u^{0}\right)}{\left(u^{2}+3u^{1}-4\right)^{2}}
Simplify.
\frac{u^{2}\times 3u^{0}+3u^{1}\times 3u^{0}-4\times 3u^{0}-\left(3u^{1}+4\right)\left(2u^{1}+3u^{0}\right)}{\left(u^{2}+3u^{1}-4\right)^{2}}
Multiply u^{2}+3u^{1}-4 times 3u^{0}.
\frac{u^{2}\times 3u^{0}+3u^{1}\times 3u^{0}-4\times 3u^{0}-\left(3u^{1}\times 2u^{1}+3u^{1}\times 3u^{0}+4\times 2u^{1}+4\times 3u^{0}\right)}{\left(u^{2}+3u^{1}-4\right)^{2}}
Multiply 3u^{1}+4 times 2u^{1}+3u^{0}.
\frac{3u^{2}+3\times 3u^{1}-4\times 3u^{0}-\left(3\times 2u^{1+1}+3\times 3u^{1}+4\times 2u^{1}+4\times 3u^{0}\right)}{\left(u^{2}+3u^{1}-4\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{3u^{2}+9u^{1}-12u^{0}-\left(6u^{2}+9u^{1}+8u^{1}+12u^{0}\right)}{\left(u^{2}+3u^{1}-4\right)^{2}}
Simplify.
\frac{-3u^{2}-8u^{1}-24u^{0}}{\left(u^{2}+3u^{1}-4\right)^{2}}
Combine like terms.
\frac{-3u^{2}-8u-24u^{0}}{\left(u^{2}+3u-4\right)^{2}}
For any term t, t^{1}=t.
\frac{-3u^{2}-8u-24}{\left(u^{2}+3u-4\right)^{2}}
For any term t except 0, t^{0}=1.