Solve for u
u=\frac{y-4}{4}
y\neq 2
Solve for y
y=4\left(u+1\right)
u\neq -\frac{1}{2}
Graph
Share
Copied to clipboard
2\left(2u+1\right)=y-2
Multiply both sides of the equation by 2\left(y-2\right), the least common multiple of y-2,2.
4u+2=y-2
Use the distributive property to multiply 2 by 2u+1.
4u=y-2-2
Subtract 2 from both sides.
4u=y-4
Subtract 2 from -2 to get -4.
\frac{4u}{4}=\frac{y-4}{4}
Divide both sides by 4.
u=\frac{y-4}{4}
Dividing by 4 undoes the multiplication by 4.
u=\frac{y}{4}-1
Divide y-4 by 4.
2\left(2u+1\right)=y-2
Variable y cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 2\left(y-2\right), the least common multiple of y-2,2.
4u+2=y-2
Use the distributive property to multiply 2 by 2u+1.
y-2=4u+2
Swap sides so that all variable terms are on the left hand side.
y=4u+2+2
Add 2 to both sides.
y=4u+4
Add 2 and 2 to get 4.
y=4u+4\text{, }y\neq 2
Variable y cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}