Solve for u
u=\frac{3z}{4}+1
Solve for z
z=\frac{4\left(u-1\right)}{3}
Share
Copied to clipboard
2\left(2u+1\right)-3\left(z-2\right)=12
Multiply both sides of the equation by 6, the least common multiple of 3,2.
4u+2-3\left(z-2\right)=12
Use the distributive property to multiply 2 by 2u+1.
4u+2-3z+6=12
Use the distributive property to multiply -3 by z-2.
4u+8-3z=12
Add 2 and 6 to get 8.
4u-3z=12-8
Subtract 8 from both sides.
4u-3z=4
Subtract 8 from 12 to get 4.
4u=4+3z
Add 3z to both sides.
4u=3z+4
The equation is in standard form.
\frac{4u}{4}=\frac{3z+4}{4}
Divide both sides by 4.
u=\frac{3z+4}{4}
Dividing by 4 undoes the multiplication by 4.
u=\frac{3z}{4}+1
Divide 4+3z by 4.
2\left(2u+1\right)-3\left(z-2\right)=12
Multiply both sides of the equation by 6, the least common multiple of 3,2.
4u+2-3\left(z-2\right)=12
Use the distributive property to multiply 2 by 2u+1.
4u+2-3z+6=12
Use the distributive property to multiply -3 by z-2.
4u+8-3z=12
Add 2 and 6 to get 8.
8-3z=12-4u
Subtract 4u from both sides.
-3z=12-4u-8
Subtract 8 from both sides.
-3z=4-4u
Subtract 8 from 12 to get 4.
\frac{-3z}{-3}=\frac{4-4u}{-3}
Divide both sides by -3.
z=\frac{4-4u}{-3}
Dividing by -3 undoes the multiplication by -3.
z=\frac{4u-4}{3}
Divide 4-4u by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}