Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\left(t-7\right)\left(2t-3t\right)=-3\left(t-1-2t\right)
Variable t cannot be equal to 7 since division by zero is not defined. Multiply both sides of the equation by 3\left(t-7\right), the least common multiple of t+3-t,10-\left(t+3\right).
\left(t-7\right)\left(-1\right)t=-3\left(t-1-2t\right)
Combine 2t and -3t to get -t.
\left(-t+7\right)t=-3\left(t-1-2t\right)
Use the distributive property to multiply t-7 by -1.
-t^{2}+7t=-3\left(t-1-2t\right)
Use the distributive property to multiply -t+7 by t.
-t^{2}+7t=-3\left(-t-1\right)
Combine t and -2t to get -t.
-t^{2}+7t=3t+3
Use the distributive property to multiply -3 by -t-1.
-t^{2}+7t-3t=3
Subtract 3t from both sides.
-t^{2}+4t=3
Combine 7t and -3t to get 4t.
-t^{2}+4t-3=0
Subtract 3 from both sides.
t=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-4±\sqrt{16-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square 4.
t=\frac{-4±\sqrt{16+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-4±\sqrt{16-12}}{2\left(-1\right)}
Multiply 4 times -3.
t=\frac{-4±\sqrt{4}}{2\left(-1\right)}
Add 16 to -12.
t=\frac{-4±2}{2\left(-1\right)}
Take the square root of 4.
t=\frac{-4±2}{-2}
Multiply 2 times -1.
t=-\frac{2}{-2}
Now solve the equation t=\frac{-4±2}{-2} when ± is plus. Add -4 to 2.
t=1
Divide -2 by -2.
t=-\frac{6}{-2}
Now solve the equation t=\frac{-4±2}{-2} when ± is minus. Subtract 2 from -4.
t=3
Divide -6 by -2.
t=1 t=3
The equation is now solved.
\left(t-7\right)\left(2t-3t\right)=-3\left(t-1-2t\right)
Variable t cannot be equal to 7 since division by zero is not defined. Multiply both sides of the equation by 3\left(t-7\right), the least common multiple of t+3-t,10-\left(t+3\right).
\left(t-7\right)\left(-1\right)t=-3\left(t-1-2t\right)
Combine 2t and -3t to get -t.
\left(-t+7\right)t=-3\left(t-1-2t\right)
Use the distributive property to multiply t-7 by -1.
-t^{2}+7t=-3\left(t-1-2t\right)
Use the distributive property to multiply -t+7 by t.
-t^{2}+7t=-3\left(-t-1\right)
Combine t and -2t to get -t.
-t^{2}+7t=3t+3
Use the distributive property to multiply -3 by -t-1.
-t^{2}+7t-3t=3
Subtract 3t from both sides.
-t^{2}+4t=3
Combine 7t and -3t to get 4t.
\frac{-t^{2}+4t}{-1}=\frac{3}{-1}
Divide both sides by -1.
t^{2}+\frac{4}{-1}t=\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-4t=\frac{3}{-1}
Divide 4 by -1.
t^{2}-4t=-3
Divide 3 by -1.
t^{2}-4t+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-4t+4=-3+4
Square -2.
t^{2}-4t+4=1
Add -3 to 4.
\left(t-2\right)^{2}=1
Factor t^{2}-4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
t-2=1 t-2=-1
Simplify.
t=3 t=1
Add 2 to both sides of the equation.