Solve for t
t=1
t=3
Share
Copied to clipboard
\left(t-7\right)\left(2t-3t\right)=-3\left(t-1-2t\right)
Variable t cannot be equal to 7 since division by zero is not defined. Multiply both sides of the equation by 3\left(t-7\right), the least common multiple of t+3-t,10-\left(t+3\right).
\left(t-7\right)\left(-1\right)t=-3\left(t-1-2t\right)
Combine 2t and -3t to get -t.
\left(-t+7\right)t=-3\left(t-1-2t\right)
Use the distributive property to multiply t-7 by -1.
-t^{2}+7t=-3\left(t-1-2t\right)
Use the distributive property to multiply -t+7 by t.
-t^{2}+7t=-3\left(-t-1\right)
Combine t and -2t to get -t.
-t^{2}+7t=3t+3
Use the distributive property to multiply -3 by -t-1.
-t^{2}+7t-3t=3
Subtract 3t from both sides.
-t^{2}+4t=3
Combine 7t and -3t to get 4t.
-t^{2}+4t-3=0
Subtract 3 from both sides.
t=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-4±\sqrt{16-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square 4.
t=\frac{-4±\sqrt{16+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-4±\sqrt{16-12}}{2\left(-1\right)}
Multiply 4 times -3.
t=\frac{-4±\sqrt{4}}{2\left(-1\right)}
Add 16 to -12.
t=\frac{-4±2}{2\left(-1\right)}
Take the square root of 4.
t=\frac{-4±2}{-2}
Multiply 2 times -1.
t=-\frac{2}{-2}
Now solve the equation t=\frac{-4±2}{-2} when ± is plus. Add -4 to 2.
t=1
Divide -2 by -2.
t=-\frac{6}{-2}
Now solve the equation t=\frac{-4±2}{-2} when ± is minus. Subtract 2 from -4.
t=3
Divide -6 by -2.
t=1 t=3
The equation is now solved.
\left(t-7\right)\left(2t-3t\right)=-3\left(t-1-2t\right)
Variable t cannot be equal to 7 since division by zero is not defined. Multiply both sides of the equation by 3\left(t-7\right), the least common multiple of t+3-t,10-\left(t+3\right).
\left(t-7\right)\left(-1\right)t=-3\left(t-1-2t\right)
Combine 2t and -3t to get -t.
\left(-t+7\right)t=-3\left(t-1-2t\right)
Use the distributive property to multiply t-7 by -1.
-t^{2}+7t=-3\left(t-1-2t\right)
Use the distributive property to multiply -t+7 by t.
-t^{2}+7t=-3\left(-t-1\right)
Combine t and -2t to get -t.
-t^{2}+7t=3t+3
Use the distributive property to multiply -3 by -t-1.
-t^{2}+7t-3t=3
Subtract 3t from both sides.
-t^{2}+4t=3
Combine 7t and -3t to get 4t.
\frac{-t^{2}+4t}{-1}=\frac{3}{-1}
Divide both sides by -1.
t^{2}+\frac{4}{-1}t=\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-4t=\frac{3}{-1}
Divide 4 by -1.
t^{2}-4t=-3
Divide 3 by -1.
t^{2}-4t+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-4t+4=-3+4
Square -2.
t^{2}-4t+4=1
Add -3 to 4.
\left(t-2\right)^{2}=1
Factor t^{2}-4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
t-2=1 t-2=-1
Simplify.
t=3 t=1
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}