Solve for t
t = \frac{15}{7} = 2\frac{1}{7} \approx 2.142857143
Share
Copied to clipboard
\frac{2}{3}\times 3^{\frac{1}{2}}\times 2t=5\sqrt{3}-\sqrt{3}t
Multiply both sides of the equation by 10.
\frac{2\times 2}{3}\times 3^{\frac{1}{2}}t=5\sqrt{3}-\sqrt{3}t
Express \frac{2}{3}\times 2 as a single fraction.
\frac{4}{3}\times 3^{\frac{1}{2}}t=5\sqrt{3}-\sqrt{3}t
Multiply 2 and 2 to get 4.
\frac{4}{3}\times 3^{\frac{1}{2}}t+\sqrt{3}t=5\sqrt{3}
Add \sqrt{3}t to both sides.
\frac{4}{3}\sqrt{3}t+\sqrt{3}t=5\sqrt{3}
Reorder the terms.
\frac{7}{3}\sqrt{3}t=5\sqrt{3}
Combine \frac{4}{3}\sqrt{3}t and \sqrt{3}t to get \frac{7}{3}\sqrt{3}t.
\frac{7\sqrt{3}}{3}t=5\sqrt{3}
The equation is in standard form.
\frac{3\times \frac{7\sqrt{3}}{3}t}{7\sqrt{3}}=\frac{3\times 5\sqrt{3}}{7\sqrt{3}}
Divide both sides by \frac{7}{3}\sqrt{3}.
t=\frac{3\times 5\sqrt{3}}{7\sqrt{3}}
Dividing by \frac{7}{3}\sqrt{3} undoes the multiplication by \frac{7}{3}\sqrt{3}.
t=\frac{15}{7}
Divide 5\sqrt{3} by \frac{7}{3}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}