Solve for r
r=4
Share
Copied to clipboard
2r-2+\left(r-3\right)\times 4=r+6
Variable r cannot be equal to any of the values -6,3 since division by zero is not defined. Multiply both sides of the equation by \left(r-3\right)\left(r+6\right), the least common multiple of r^{2}+3r-18,r+6,r-3.
2r-2+4r-12=r+6
Use the distributive property to multiply r-3 by 4.
6r-2-12=r+6
Combine 2r and 4r to get 6r.
6r-14=r+6
Subtract 12 from -2 to get -14.
6r-14-r=6
Subtract r from both sides.
5r-14=6
Combine 6r and -r to get 5r.
5r=6+14
Add 14 to both sides.
5r=20
Add 6 and 14 to get 20.
r=\frac{20}{5}
Divide both sides by 5.
r=4
Divide 20 by 5 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}