Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. r
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\times \left(2r^{0}\right)^{2}}{r^{1}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{2\times \left(2\times 1\right)^{2}}{r^{1}}
Calculate r to the power of 0 and get 1.
\frac{2\times 2^{2}}{r^{1}}
Multiply 2 and 1 to get 2.
\frac{2\times 4}{r^{1}}
Calculate 2 to the power of 2 and get 4.
\frac{8}{r^{1}}
Multiply 2 and 4 to get 8.
\frac{8}{r}
Calculate r to the power of 1 and get r.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2\times \left(2r^{0}\right)^{2}}{r^{1}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2\times \left(2\times 1\right)^{2}}{r^{1}})
Calculate r to the power of 0 and get 1.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2\times 2^{2}}{r^{1}})
Multiply 2 and 1 to get 2.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2\times 4}{r^{1}})
Calculate 2 to the power of 2 and get 4.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{8}{r^{1}})
Multiply 2 and 4 to get 8.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{8}{r})
Calculate r to the power of 1 and get r.
-8r^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-8r^{-2}
Subtract 1 from -1.