Evaluate
\frac{2\left(1-2p^{2}\right)}{p\left(p^{6}+1\right)}
Factor
\frac{2\left(1-2p^{2}\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}
Share
Copied to clipboard
\frac{2p}{p^{2}\left(p^{2}+1\right)}-\frac{2p}{1-p^{2}+p^{4}}
Factor the expressions that are not already factored in \frac{2p}{p^{2}+p^{4}}.
\frac{2}{p\left(p^{2}+1\right)}-\frac{2p}{1-p^{2}+p^{4}}
Cancel out p in both numerator and denominator.
\frac{2\left(p^{4}-p^{2}+1\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}-\frac{2pp\left(p^{2}+1\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p\left(p^{2}+1\right) and 1-p^{2}+p^{4} is p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right). Multiply \frac{2}{p\left(p^{2}+1\right)} times \frac{p^{4}-p^{2}+1}{p^{4}-p^{2}+1}. Multiply \frac{2p}{1-p^{2}+p^{4}} times \frac{p\left(p^{2}+1\right)}{p\left(p^{2}+1\right)}.
\frac{2\left(p^{4}-p^{2}+1\right)-2pp\left(p^{2}+1\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}
Since \frac{2\left(p^{4}-p^{2}+1\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)} and \frac{2pp\left(p^{2}+1\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2p^{4}-2p^{2}+2-2p^{4}-2p^{2}}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}
Do the multiplications in 2\left(p^{4}-p^{2}+1\right)-2pp\left(p^{2}+1\right).
\frac{-4p^{2}+2}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}
Combine like terms in 2p^{4}-2p^{2}+2-2p^{4}-2p^{2}.
\frac{-4p^{2}+2}{p^{7}+p}
Expand p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}