Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2p}{p^{2}\left(p^{2}+1\right)}-\frac{2p}{1-p^{2}+p^{4}}
Factor the expressions that are not already factored in \frac{2p}{p^{2}+p^{4}}.
\frac{2}{p\left(p^{2}+1\right)}-\frac{2p}{1-p^{2}+p^{4}}
Cancel out p in both numerator and denominator.
\frac{2\left(p^{4}-p^{2}+1\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}-\frac{2pp\left(p^{2}+1\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p\left(p^{2}+1\right) and 1-p^{2}+p^{4} is p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right). Multiply \frac{2}{p\left(p^{2}+1\right)} times \frac{p^{4}-p^{2}+1}{p^{4}-p^{2}+1}. Multiply \frac{2p}{1-p^{2}+p^{4}} times \frac{p\left(p^{2}+1\right)}{p\left(p^{2}+1\right)}.
\frac{2\left(p^{4}-p^{2}+1\right)-2pp\left(p^{2}+1\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}
Since \frac{2\left(p^{4}-p^{2}+1\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)} and \frac{2pp\left(p^{2}+1\right)}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2p^{4}-2p^{2}+2-2p^{4}-2p^{2}}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}
Do the multiplications in 2\left(p^{4}-p^{2}+1\right)-2pp\left(p^{2}+1\right).
\frac{-4p^{2}+2}{p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right)}
Combine like terms in 2p^{4}-2p^{2}+2-2p^{4}-2p^{2}.
\frac{-4p^{2}+2}{p^{7}+p}
Expand p\left(p^{2}+1\right)\left(p^{4}-p^{2}+1\right).