Solve for p
p=-\frac{1}{9}\approx -0.111111111
Share
Copied to clipboard
7\left(2p+1\right)=5p+6
Variable p cannot be equal to -\frac{6}{5} since division by zero is not defined. Multiply both sides of the equation by 7\left(5p+6\right), the least common multiple of 5p+6,7.
14p+7=5p+6
Use the distributive property to multiply 7 by 2p+1.
14p+7-5p=6
Subtract 5p from both sides.
9p+7=6
Combine 14p and -5p to get 9p.
9p=6-7
Subtract 7 from both sides.
9p=-1
Subtract 7 from 6 to get -1.
p=\frac{-1}{9}
Divide both sides by 9.
p=-\frac{1}{9}
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}