Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(n+1\right) and 2n is 2n\left(n+1\right). Multiply \frac{2n^{2}-n-1}{2\left(n+1\right)} times \frac{n}{n}. Multiply \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} times \frac{n+1}{n+1}.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Since \frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} and \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
Do the multiplications in \left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right).
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
Combine like terms in 2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
Factor the expressions that are not already factored in \frac{2n^{2}+2n-2}{2n\left(n+1\right)}.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Expand n\left(n+1\right).
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
To find the opposite of -\frac{1}{2}\sqrt{5}-\frac{1}{2}, find the opposite of each term.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
To find the opposite of \frac{1}{2}\sqrt{5}-\frac{1}{2}, find the opposite of each term.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
Use the distributive property to multiply n+\frac{1}{2}\sqrt{5}+\frac{1}{2} by n-\frac{1}{2}\sqrt{5}+\frac{1}{2} and combine like terms.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
The square of \sqrt{5} is 5.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
Multiply -\frac{1}{4} and 5 to get -\frac{5}{4}.
\frac{n^{2}+n-1}{n^{2}+n}
Add -\frac{5}{4} and \frac{1}{4} to get -1.
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(n+1\right) and 2n is 2n\left(n+1\right). Multiply \frac{2n^{2}-n-1}{2\left(n+1\right)} times \frac{n}{n}. Multiply \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} times \frac{n+1}{n+1}.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Since \frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} and \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
Do the multiplications in \left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right).
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
Combine like terms in 2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
Factor the expressions that are not already factored in \frac{2n^{2}+2n-2}{2n\left(n+1\right)}.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Expand n\left(n+1\right).
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
To find the opposite of -\frac{1}{2}\sqrt{5}-\frac{1}{2}, find the opposite of each term.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
To find the opposite of \frac{1}{2}\sqrt{5}-\frac{1}{2}, find the opposite of each term.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
Use the distributive property to multiply n+\frac{1}{2}\sqrt{5}+\frac{1}{2} by n-\frac{1}{2}\sqrt{5}+\frac{1}{2} and combine like terms.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
The square of \sqrt{5} is 5.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
Multiply -\frac{1}{4} and 5 to get -\frac{5}{4}.
\frac{n^{2}+n-1}{n^{2}+n}
Add -\frac{5}{4} and \frac{1}{4} to get -1.