Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2mn^{6}}{\left(2n^{3}m^{4}\right)^{-4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{2mn^{6}}{2^{-4}\left(n^{3}\right)^{-4}\left(m^{4}\right)^{-4}}
Expand \left(2n^{3}m^{4}\right)^{-4}.
\frac{2mn^{6}}{2^{-4}n^{-12}\left(m^{4}\right)^{-4}}
To raise a power to another power, multiply the exponents. Multiply 3 and -4 to get -12.
\frac{2mn^{6}}{2^{-4}n^{-12}m^{-16}}
To raise a power to another power, multiply the exponents. Multiply 4 and -4 to get -16.
\frac{2mn^{6}}{\frac{1}{16}n^{-12}m^{-16}}
Calculate 2 to the power of -4 and get \frac{1}{16}.
\frac{2m^{17}n^{18}}{\frac{1}{16}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
2m^{17}n^{18}\times 16
Divide 2m^{17}n^{18} by \frac{1}{16} by multiplying 2m^{17}n^{18} by the reciprocal of \frac{1}{16}.
32m^{17}n^{18}
Multiply 2 and 16 to get 32.
\frac{2mn^{6}}{\left(2n^{3}m^{4}\right)^{-4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{2mn^{6}}{2^{-4}\left(n^{3}\right)^{-4}\left(m^{4}\right)^{-4}}
Expand \left(2n^{3}m^{4}\right)^{-4}.
\frac{2mn^{6}}{2^{-4}n^{-12}\left(m^{4}\right)^{-4}}
To raise a power to another power, multiply the exponents. Multiply 3 and -4 to get -12.
\frac{2mn^{6}}{2^{-4}n^{-12}m^{-16}}
To raise a power to another power, multiply the exponents. Multiply 4 and -4 to get -16.
\frac{2mn^{6}}{\frac{1}{16}n^{-12}m^{-16}}
Calculate 2 to the power of -4 and get \frac{1}{16}.
\frac{2m^{17}n^{18}}{\frac{1}{16}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
2m^{17}n^{18}\times 16
Divide 2m^{17}n^{18} by \frac{1}{16} by multiplying 2m^{17}n^{18} by the reciprocal of \frac{1}{16}.
32m^{17}n^{18}
Multiply 2 and 16 to get 32.