Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. m
Tick mark Image

Similar Problems from Web Search

Share

\frac{2m^{3}\times 7\times 4}{3m^{2}\times 14m+8}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{2m^{3}\times 7\times 4}{3m^{3}\times 14+8}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{14m^{3}\times 4}{3m^{3}\times 14+8}
Multiply 2 and 7 to get 14.
\frac{56m^{3}}{3m^{3}\times 14+8}
Multiply 14 and 4 to get 56.
\frac{56m^{3}}{42m^{3}+8}
Multiply 3 and 14 to get 42.
\frac{56m^{3}}{2\left(21m^{3}+4\right)}
Factor the expressions that are not already factored.
\frac{28m^{3}}{21m^{3}+4}
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{2m^{3}\times 7\times 4}{3m^{2}\times 14m+8})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{2m^{3}\times 7\times 4}{3m^{3}\times 14+8})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{14m^{3}\times 4}{3m^{3}\times 14+8})
Multiply 2 and 7 to get 14.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{56m^{3}}{3m^{3}\times 14+8})
Multiply 14 and 4 to get 56.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{56m^{3}}{42m^{3}+8})
Multiply 3 and 14 to get 42.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{56m^{3}}{2\left(21m^{3}+4\right)})
Factor the expressions that are not already factored in \frac{56m^{3}}{42m^{3}+8}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{28m^{3}}{21m^{3}+4})
Cancel out 2 in both numerator and denominator.
\frac{\left(21m^{3}+4\right)\frac{\mathrm{d}}{\mathrm{d}m}(28m^{3})-28m^{3}\frac{\mathrm{d}}{\mathrm{d}m}(21m^{3}+4)}{\left(21m^{3}+4\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(21m^{3}+4\right)\times 3\times 28m^{3-1}-28m^{3}\times 3\times 21m^{3-1}}{\left(21m^{3}+4\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(21m^{3}+4\right)\times 84m^{2}-28m^{3}\times 63m^{2}}{\left(21m^{3}+4\right)^{2}}
Do the arithmetic.
\frac{21m^{3}\times 84m^{2}+4\times 84m^{2}-28m^{3}\times 63m^{2}}{\left(21m^{3}+4\right)^{2}}
Expand using distributive property.
\frac{21\times 84m^{3+2}+4\times 84m^{2}-28\times 63m^{3+2}}{\left(21m^{3}+4\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{1764m^{5}+336m^{2}-1764m^{5}}{\left(21m^{3}+4\right)^{2}}
Do the arithmetic.
\frac{\left(1764-1764\right)m^{5}+336m^{2}}{\left(21m^{3}+4\right)^{2}}
Combine like terms.
\frac{336m^{2}}{\left(21m^{3}+4\right)^{2}}
Subtract 1764 from 1764.