Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

2m^{2}+16=10m
Multiply both sides of the equation by 5.
2m^{2}+16-10m=0
Subtract 10m from both sides.
2m^{2}-10m+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 16}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -10 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 16}}{2\times 2}
Square -10.
m=\frac{-\left(-10\right)±\sqrt{100-8\times 16}}{2\times 2}
Multiply -4 times 2.
m=\frac{-\left(-10\right)±\sqrt{100-128}}{2\times 2}
Multiply -8 times 16.
m=\frac{-\left(-10\right)±\sqrt{-28}}{2\times 2}
Add 100 to -128.
m=\frac{-\left(-10\right)±2\sqrt{7}i}{2\times 2}
Take the square root of -28.
m=\frac{10±2\sqrt{7}i}{2\times 2}
The opposite of -10 is 10.
m=\frac{10±2\sqrt{7}i}{4}
Multiply 2 times 2.
m=\frac{10+2\sqrt{7}i}{4}
Now solve the equation m=\frac{10±2\sqrt{7}i}{4} when ± is plus. Add 10 to 2i\sqrt{7}.
m=\frac{5+\sqrt{7}i}{2}
Divide 10+2i\sqrt{7} by 4.
m=\frac{-2\sqrt{7}i+10}{4}
Now solve the equation m=\frac{10±2\sqrt{7}i}{4} when ± is minus. Subtract 2i\sqrt{7} from 10.
m=\frac{-\sqrt{7}i+5}{2}
Divide 10-2i\sqrt{7} by 4.
m=\frac{5+\sqrt{7}i}{2} m=\frac{-\sqrt{7}i+5}{2}
The equation is now solved.
2m^{2}+16=10m
Multiply both sides of the equation by 5.
2m^{2}+16-10m=0
Subtract 10m from both sides.
2m^{2}-10m=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
\frac{2m^{2}-10m}{2}=-\frac{16}{2}
Divide both sides by 2.
m^{2}+\left(-\frac{10}{2}\right)m=-\frac{16}{2}
Dividing by 2 undoes the multiplication by 2.
m^{2}-5m=-\frac{16}{2}
Divide -10 by 2.
m^{2}-5m=-8
Divide -16 by 2.
m^{2}-5m+\left(-\frac{5}{2}\right)^{2}=-8+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-5m+\frac{25}{4}=-8+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-5m+\frac{25}{4}=-\frac{7}{4}
Add -8 to \frac{25}{4}.
\left(m-\frac{5}{2}\right)^{2}=-\frac{7}{4}
Factor m^{2}-5m+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Take the square root of both sides of the equation.
m-\frac{5}{2}=\frac{\sqrt{7}i}{2} m-\frac{5}{2}=-\frac{\sqrt{7}i}{2}
Simplify.
m=\frac{5+\sqrt{7}i}{2} m=\frac{-\sqrt{7}i+5}{2}
Add \frac{5}{2} to both sides of the equation.