Solve for m
m=-16x+30y-96
Solve for x
x=\frac{15y}{8}-\frac{m}{16}-6
Graph
Share
Copied to clipboard
8\left(2m+2+2x\right)-5\left(3m+6y\right)=-80
Multiply both sides of the equation by 40, the least common multiple of 5,8.
16m+16+16x-5\left(3m+6y\right)=-80
Use the distributive property to multiply 8 by 2m+2+2x.
16m+16+16x-15m-30y=-80
Use the distributive property to multiply -5 by 3m+6y.
m+16+16x-30y=-80
Combine 16m and -15m to get m.
m+16x-30y=-80-16
Subtract 16 from both sides.
m+16x-30y=-96
Subtract 16 from -80 to get -96.
m-30y=-96-16x
Subtract 16x from both sides.
m=-96-16x+30y
Add 30y to both sides.
8\left(2m+2+2x\right)-5\left(3m+6y\right)=-80
Multiply both sides of the equation by 40, the least common multiple of 5,8.
16m+16+16x-5\left(3m+6y\right)=-80
Use the distributive property to multiply 8 by 2m+2+2x.
16m+16+16x-15m-30y=-80
Use the distributive property to multiply -5 by 3m+6y.
m+16+16x-30y=-80
Combine 16m and -15m to get m.
16+16x-30y=-80-m
Subtract m from both sides.
16x-30y=-80-m-16
Subtract 16 from both sides.
16x-30y=-96-m
Subtract 16 from -80 to get -96.
16x=-96-m+30y
Add 30y to both sides.
16x=30y-m-96
The equation is in standard form.
\frac{16x}{16}=\frac{30y-m-96}{16}
Divide both sides by 16.
x=\frac{30y-m-96}{16}
Dividing by 16 undoes the multiplication by 16.
x=\frac{15y}{8}-\frac{m}{16}-6
Divide -96-m+30y by 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}