Evaluate
\frac{2\left(5k^{2}-7k-21\right)}{\left(5k-1\right)\left(2k+7\right)}
Factor
\frac{10\left(k-\frac{7-\sqrt{469}}{10}\right)\left(k-\frac{\sqrt{469}+7}{10}\right)}{\left(5k-1\right)\left(2k+7\right)}
Share
Copied to clipboard
\frac{2k\left(5k-1\right)}{\left(5k-1\right)\left(2k+7\right)}-\frac{6\left(2k+7\right)}{\left(5k-1\right)\left(2k+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2k+7 and 5k-1 is \left(5k-1\right)\left(2k+7\right). Multiply \frac{2k}{2k+7} times \frac{5k-1}{5k-1}. Multiply \frac{6}{5k-1} times \frac{2k+7}{2k+7}.
\frac{2k\left(5k-1\right)-6\left(2k+7\right)}{\left(5k-1\right)\left(2k+7\right)}
Since \frac{2k\left(5k-1\right)}{\left(5k-1\right)\left(2k+7\right)} and \frac{6\left(2k+7\right)}{\left(5k-1\right)\left(2k+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{10k^{2}-2k-12k-42}{\left(5k-1\right)\left(2k+7\right)}
Do the multiplications in 2k\left(5k-1\right)-6\left(2k+7\right).
\frac{10k^{2}-14k-42}{\left(5k-1\right)\left(2k+7\right)}
Combine like terms in 10k^{2}-2k-12k-42.
\frac{10k^{2}-14k-42}{10k^{2}+33k-7}
Expand \left(5k-1\right)\left(2k+7\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}