Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2i\left(9+6i\right)}{\left(9-6i\right)\left(9+6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 9+6i.
\frac{2i\left(9+6i\right)}{9^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2i\left(9+6i\right)}{117}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2i\times 9+2\times 6i^{2}}{117}
Multiply 2i times 9+6i.
\frac{2i\times 9+2\times 6\left(-1\right)}{117}
By definition, i^{2} is -1.
\frac{-12+18i}{117}
Do the multiplications in 2i\times 9+2\times 6\left(-1\right). Reorder the terms.
-\frac{4}{39}+\frac{2}{13}i
Divide -12+18i by 117 to get -\frac{4}{39}+\frac{2}{13}i.
Re(\frac{2i\left(9+6i\right)}{\left(9-6i\right)\left(9+6i\right)})
Multiply both numerator and denominator of \frac{2i}{9-6i} by the complex conjugate of the denominator, 9+6i.
Re(\frac{2i\left(9+6i\right)}{9^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2i\left(9+6i\right)}{117})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2i\times 9+2\times 6i^{2}}{117})
Multiply 2i times 9+6i.
Re(\frac{2i\times 9+2\times 6\left(-1\right)}{117})
By definition, i^{2} is -1.
Re(\frac{-12+18i}{117})
Do the multiplications in 2i\times 9+2\times 6\left(-1\right). Reorder the terms.
Re(-\frac{4}{39}+\frac{2}{13}i)
Divide -12+18i by 117 to get -\frac{4}{39}+\frac{2}{13}i.
-\frac{4}{39}
The real part of -\frac{4}{39}+\frac{2}{13}i is -\frac{4}{39}.