Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2i\left(5+i\right)}{\left(5-i\right)\left(5+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+i.
\frac{2i\left(5+i\right)}{5^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2i\left(5+i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2i\times 5+2i^{2}}{26}
Multiply 2i times 5+i.
\frac{2i\times 5+2\left(-1\right)}{26}
By definition, i^{2} is -1.
\frac{-2+10i}{26}
Do the multiplications in 2i\times 5+2\left(-1\right). Reorder the terms.
-\frac{1}{13}+\frac{5}{13}i
Divide -2+10i by 26 to get -\frac{1}{13}+\frac{5}{13}i.
Re(\frac{2i\left(5+i\right)}{\left(5-i\right)\left(5+i\right)})
Multiply both numerator and denominator of \frac{2i}{5-i} by the complex conjugate of the denominator, 5+i.
Re(\frac{2i\left(5+i\right)}{5^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2i\left(5+i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2i\times 5+2i^{2}}{26})
Multiply 2i times 5+i.
Re(\frac{2i\times 5+2\left(-1\right)}{26})
By definition, i^{2} is -1.
Re(\frac{-2+10i}{26})
Do the multiplications in 2i\times 5+2\left(-1\right). Reorder the terms.
Re(-\frac{1}{13}+\frac{5}{13}i)
Divide -2+10i by 26 to get -\frac{1}{13}+\frac{5}{13}i.
-\frac{1}{13}
The real part of -\frac{1}{13}+\frac{5}{13}i is -\frac{1}{13}.