Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}+\frac{5}{2-i}
Multiply both numerator and denominator of \frac{2i}{2+i} by the complex conjugate of the denominator, 2-i.
\frac{2+4i}{5}+\frac{5}{2-i}
Do the multiplications in \frac{2i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
\frac{2}{5}+\frac{4}{5}i+\frac{5}{2-i}
Divide 2+4i by 5 to get \frac{2}{5}+\frac{4}{5}i.
\frac{2}{5}+\frac{4}{5}i+\frac{5\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator of \frac{5}{2-i} by the complex conjugate of the denominator, 2+i.
\frac{2}{5}+\frac{4}{5}i+\frac{10+5i}{5}
Do the multiplications in \frac{5\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
\frac{2}{5}+\frac{4}{5}i+\left(2+i\right)
Divide 10+5i by 5 to get 2+i.
\frac{12}{5}+\frac{9}{5}i
Add \frac{2}{5}+\frac{4}{5}i and 2+i to get \frac{12}{5}+\frac{9}{5}i.
Re(\frac{2i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}+\frac{5}{2-i})
Multiply both numerator and denominator of \frac{2i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{2+4i}{5}+\frac{5}{2-i})
Do the multiplications in \frac{2i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
Re(\frac{2}{5}+\frac{4}{5}i+\frac{5}{2-i})
Divide 2+4i by 5 to get \frac{2}{5}+\frac{4}{5}i.
Re(\frac{2}{5}+\frac{4}{5}i+\frac{5\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{5}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{2}{5}+\frac{4}{5}i+\frac{10+5i}{5})
Do the multiplications in \frac{5\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
Re(\frac{2}{5}+\frac{4}{5}i+\left(2+i\right))
Divide 10+5i by 5 to get 2+i.
Re(\frac{12}{5}+\frac{9}{5}i)
Add \frac{2}{5}+\frac{4}{5}i and 2+i to get \frac{12}{5}+\frac{9}{5}i.
\frac{12}{5}
The real part of \frac{12}{5}+\frac{9}{5}i is \frac{12}{5}.