\frac { 2 d x } { d t } = x
Solve for d
d\neq 0
\left(x=0\text{ and }t\neq 0\right)\text{ or }t=2
Solve for t
\left\{\begin{matrix}t=2\text{, }&d\neq 0\\t\neq 0\text{, }&x=0\text{ and }d\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
2dx=xdt
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dt.
2dx-xdt=0
Subtract xdt from both sides.
-dtx+2dx=0
Reorder the terms.
\left(-tx+2x\right)d=0
Combine all terms containing d.
\left(2x-tx\right)d=0
The equation is in standard form.
d=0
Divide 0 by -tx+2x.
d\in \emptyset
Variable d cannot be equal to 0.
2dx=xdt
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dt.
xdt=2dx
Swap sides so that all variable terms are on the left hand side.
dxt=2dx
The equation is in standard form.
\frac{dxt}{dx}=\frac{2dx}{dx}
Divide both sides by xd.
t=\frac{2dx}{dx}
Dividing by xd undoes the multiplication by xd.
t=2
Divide 2dx by xd.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}