Evaluate
\frac{2rs}{r+s}
Differentiate w.r.t. r
2\times \left(\frac{s}{r+s}\right)^{2}
Share
Copied to clipboard
\frac{2d}{\frac{ds}{rs}+\frac{dr}{rs}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of r and s is rs. Multiply \frac{d}{r} times \frac{s}{s}. Multiply \frac{d}{s} times \frac{r}{r}.
\frac{2d}{\frac{ds+dr}{rs}}
Since \frac{ds}{rs} and \frac{dr}{rs} have the same denominator, add them by adding their numerators.
\frac{2drs}{ds+dr}
Divide 2d by \frac{ds+dr}{rs} by multiplying 2d by the reciprocal of \frac{ds+dr}{rs}.
\frac{2drs}{d\left(r+s\right)}
Factor the expressions that are not already factored.
\frac{2rs}{r+s}
Cancel out d in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}