Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2d+8\right)\left(d^{2}-4\right)}{\left(d^{2}+5d+6\right)\left(d+4\right)}
Divide \frac{2d+8}{d^{2}+5d+6} by \frac{d+4}{d^{2}-4} by multiplying \frac{2d+8}{d^{2}+5d+6} by the reciprocal of \frac{d+4}{d^{2}-4}.
\frac{2\left(d-2\right)\left(d+2\right)\left(d+4\right)}{\left(d+2\right)\left(d+3\right)\left(d+4\right)}
Factor the expressions that are not already factored.
\frac{2\left(d-2\right)}{d+3}
Cancel out \left(d+2\right)\left(d+4\right) in both numerator and denominator.
\frac{2d-4}{d+3}
Expand the expression.
\frac{\left(2d+8\right)\left(d^{2}-4\right)}{\left(d^{2}+5d+6\right)\left(d+4\right)}
Divide \frac{2d+8}{d^{2}+5d+6} by \frac{d+4}{d^{2}-4} by multiplying \frac{2d+8}{d^{2}+5d+6} by the reciprocal of \frac{d+4}{d^{2}-4}.
\frac{2\left(d-2\right)\left(d+2\right)\left(d+4\right)}{\left(d+2\right)\left(d+3\right)\left(d+4\right)}
Factor the expressions that are not already factored.
\frac{2\left(d-2\right)}{d+3}
Cancel out \left(d+2\right)\left(d+4\right) in both numerator and denominator.
\frac{2d-4}{d+3}
Expand the expression.