Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2c-5d\right)\left(a+2b\right)}{\left(7a+14h\right)\left(5d-2c\right)}
Divide \frac{2c-5d}{7a+14h} by \frac{5d-2c}{a+2b} by multiplying \frac{2c-5d}{7a+14h} by the reciprocal of \frac{5d-2c}{a+2b}.
\frac{-\left(a+2b\right)\left(-2c+5d\right)}{\left(-2c+5d\right)\left(7a+14h\right)}
Extract the negative sign in 2c-5d.
\frac{-\left(a+2b\right)}{7a+14h}
Cancel out -2c+5d in both numerator and denominator.
\frac{-a-2b}{7a+14h}
To find the opposite of a+2b, find the opposite of each term.
\frac{\left(2c-5d\right)\left(a+2b\right)}{\left(7a+14h\right)\left(5d-2c\right)}
Divide \frac{2c-5d}{7a+14h} by \frac{5d-2c}{a+2b} by multiplying \frac{2c-5d}{7a+14h} by the reciprocal of \frac{5d-2c}{a+2b}.
\frac{-\left(a+2b\right)\left(-2c+5d\right)}{\left(-2c+5d\right)\left(7a+14h\right)}
Extract the negative sign in 2c-5d.
\frac{-\left(a+2b\right)}{7a+14h}
Cancel out -2c+5d in both numerator and denominator.
\frac{-a-2b}{7a+14h}
To find the opposite of a+2b, find the opposite of each term.