Solve for b
b = \frac{17}{3} = 5\frac{2}{3} \approx 5.666666667
Share
Copied to clipboard
\left(b-10\right)\times 2b=\left(b+3\right)\times 3+\left(b-10\right)\left(b+3\right)\times 2
Variable b cannot be equal to any of the values -3,10 since division by zero is not defined. Multiply both sides of the equation by \left(b-10\right)\left(b+3\right), the least common multiple of b+3,b-10.
\left(2b-20\right)b=\left(b+3\right)\times 3+\left(b-10\right)\left(b+3\right)\times 2
Use the distributive property to multiply b-10 by 2.
2b^{2}-20b=\left(b+3\right)\times 3+\left(b-10\right)\left(b+3\right)\times 2
Use the distributive property to multiply 2b-20 by b.
2b^{2}-20b=3b+9+\left(b-10\right)\left(b+3\right)\times 2
Use the distributive property to multiply b+3 by 3.
2b^{2}-20b=3b+9+\left(b^{2}-7b-30\right)\times 2
Use the distributive property to multiply b-10 by b+3 and combine like terms.
2b^{2}-20b=3b+9+2b^{2}-14b-60
Use the distributive property to multiply b^{2}-7b-30 by 2.
2b^{2}-20b=-11b+9+2b^{2}-60
Combine 3b and -14b to get -11b.
2b^{2}-20b=-11b-51+2b^{2}
Subtract 60 from 9 to get -51.
2b^{2}-20b+11b=-51+2b^{2}
Add 11b to both sides.
2b^{2}-9b=-51+2b^{2}
Combine -20b and 11b to get -9b.
2b^{2}-9b-2b^{2}=-51
Subtract 2b^{2} from both sides.
-9b=-51
Combine 2b^{2} and -2b^{2} to get 0.
b=\frac{-51}{-9}
Divide both sides by -9.
b=\frac{17}{3}
Reduce the fraction \frac{-51}{-9} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}