Evaluate
\frac{\left(b-3\right)\left(2b-1\right)}{\left(b-5\right)\left(b+1\right)}
Differentiate w.r.t. b
\frac{47-26b-b^{2}}{b^{4}-8b^{3}+6b^{2}+40b+25}
Share
Copied to clipboard
\frac{2b\left(b-5\right)}{\left(b-5\right)\left(b+1\right)}+\frac{3\left(b+1\right)}{\left(b-5\right)\left(b+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+1 and b-5 is \left(b-5\right)\left(b+1\right). Multiply \frac{2b}{b+1} times \frac{b-5}{b-5}. Multiply \frac{3}{b-5} times \frac{b+1}{b+1}.
\frac{2b\left(b-5\right)+3\left(b+1\right)}{\left(b-5\right)\left(b+1\right)}
Since \frac{2b\left(b-5\right)}{\left(b-5\right)\left(b+1\right)} and \frac{3\left(b+1\right)}{\left(b-5\right)\left(b+1\right)} have the same denominator, add them by adding their numerators.
\frac{2b^{2}-10b+3b+3}{\left(b-5\right)\left(b+1\right)}
Do the multiplications in 2b\left(b-5\right)+3\left(b+1\right).
\frac{2b^{2}-7b+3}{\left(b-5\right)\left(b+1\right)}
Combine like terms in 2b^{2}-10b+3b+3.
\frac{2b^{2}-7b+3}{b^{2}-4b-5}
Expand \left(b-5\right)\left(b+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}