Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{-2ab}{\left(a-b\right)\left(-a+c\right)}+\frac{2bc}{\left(a-b\right)\left(-a+c\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-b\right)\left(a-c\right) and \left(a-b\right)\left(c-a\right) is \left(a-b\right)\left(-a+c\right). Multiply \frac{2ab}{\left(a-b\right)\left(a-c\right)} times \frac{-1}{-1}.
\frac{-2ab+2bc}{\left(a-b\right)\left(-a+c\right)}
Since \frac{-2ab}{\left(a-b\right)\left(-a+c\right)} and \frac{2bc}{\left(a-b\right)\left(-a+c\right)} have the same denominator, add them by adding their numerators.
\frac{2b\left(-a+c\right)}{\left(a-b\right)\left(-a+c\right)}
Factor the expressions that are not already factored in \frac{-2ab+2bc}{\left(a-b\right)\left(-a+c\right)}.
\frac{2b}{a-b}
Cancel out -a+c in both numerator and denominator.
\frac{-2ab}{\left(a-b\right)\left(-a+c\right)}+\frac{2bc}{\left(a-b\right)\left(-a+c\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-b\right)\left(a-c\right) and \left(a-b\right)\left(c-a\right) is \left(a-b\right)\left(-a+c\right). Multiply \frac{2ab}{\left(a-b\right)\left(a-c\right)} times \frac{-1}{-1}.
\frac{-2ab+2bc}{\left(a-b\right)\left(-a+c\right)}
Since \frac{-2ab}{\left(a-b\right)\left(-a+c\right)} and \frac{2bc}{\left(a-b\right)\left(-a+c\right)} have the same denominator, add them by adding their numerators.
\frac{2b\left(-a+c\right)}{\left(a-b\right)\left(-a+c\right)}
Factor the expressions that are not already factored in \frac{-2ab+2bc}{\left(a-b\right)\left(-a+c\right)}.
\frac{2b}{a-b}
Cancel out -a+c in both numerator and denominator.