Skip to main content
Solve for a_2
Tick mark Image

Similar Problems from Web Search

Share

-2a_{2}\times 2a_{2}=\left(a_{2}-5\right)\left(21-a_{2}\right)
Variable a_{2} cannot be equal to any of the values 0,5 since division by zero is not defined. Multiply both sides of the equation by 2a_{2}\left(a_{2}-5\right), the least common multiple of 5-a_{2},2a_{2}.
-4a_{2}a_{2}=\left(a_{2}-5\right)\left(21-a_{2}\right)
Multiply -2 and 2 to get -4.
-4a_{2}^{2}=\left(a_{2}-5\right)\left(21-a_{2}\right)
Multiply a_{2} and a_{2} to get a_{2}^{2}.
-4a_{2}^{2}=26a_{2}-a_{2}^{2}-105
Use the distributive property to multiply a_{2}-5 by 21-a_{2} and combine like terms.
-4a_{2}^{2}-26a_{2}=-a_{2}^{2}-105
Subtract 26a_{2} from both sides.
-4a_{2}^{2}-26a_{2}+a_{2}^{2}=-105
Add a_{2}^{2} to both sides.
-3a_{2}^{2}-26a_{2}=-105
Combine -4a_{2}^{2} and a_{2}^{2} to get -3a_{2}^{2}.
-3a_{2}^{2}-26a_{2}+105=0
Add 105 to both sides.
a_{2}=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\left(-3\right)\times 105}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -26 for b, and 105 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a_{2}=\frac{-\left(-26\right)±\sqrt{676-4\left(-3\right)\times 105}}{2\left(-3\right)}
Square -26.
a_{2}=\frac{-\left(-26\right)±\sqrt{676+12\times 105}}{2\left(-3\right)}
Multiply -4 times -3.
a_{2}=\frac{-\left(-26\right)±\sqrt{676+1260}}{2\left(-3\right)}
Multiply 12 times 105.
a_{2}=\frac{-\left(-26\right)±\sqrt{1936}}{2\left(-3\right)}
Add 676 to 1260.
a_{2}=\frac{-\left(-26\right)±44}{2\left(-3\right)}
Take the square root of 1936.
a_{2}=\frac{26±44}{2\left(-3\right)}
The opposite of -26 is 26.
a_{2}=\frac{26±44}{-6}
Multiply 2 times -3.
a_{2}=\frac{70}{-6}
Now solve the equation a_{2}=\frac{26±44}{-6} when ± is plus. Add 26 to 44.
a_{2}=-\frac{35}{3}
Reduce the fraction \frac{70}{-6} to lowest terms by extracting and canceling out 2.
a_{2}=-\frac{18}{-6}
Now solve the equation a_{2}=\frac{26±44}{-6} when ± is minus. Subtract 44 from 26.
a_{2}=3
Divide -18 by -6.
a_{2}=-\frac{35}{3} a_{2}=3
The equation is now solved.
-2a_{2}\times 2a_{2}=\left(a_{2}-5\right)\left(21-a_{2}\right)
Variable a_{2} cannot be equal to any of the values 0,5 since division by zero is not defined. Multiply both sides of the equation by 2a_{2}\left(a_{2}-5\right), the least common multiple of 5-a_{2},2a_{2}.
-4a_{2}a_{2}=\left(a_{2}-5\right)\left(21-a_{2}\right)
Multiply -2 and 2 to get -4.
-4a_{2}^{2}=\left(a_{2}-5\right)\left(21-a_{2}\right)
Multiply a_{2} and a_{2} to get a_{2}^{2}.
-4a_{2}^{2}=26a_{2}-a_{2}^{2}-105
Use the distributive property to multiply a_{2}-5 by 21-a_{2} and combine like terms.
-4a_{2}^{2}-26a_{2}=-a_{2}^{2}-105
Subtract 26a_{2} from both sides.
-4a_{2}^{2}-26a_{2}+a_{2}^{2}=-105
Add a_{2}^{2} to both sides.
-3a_{2}^{2}-26a_{2}=-105
Combine -4a_{2}^{2} and a_{2}^{2} to get -3a_{2}^{2}.
\frac{-3a_{2}^{2}-26a_{2}}{-3}=-\frac{105}{-3}
Divide both sides by -3.
a_{2}^{2}+\left(-\frac{26}{-3}\right)a_{2}=-\frac{105}{-3}
Dividing by -3 undoes the multiplication by -3.
a_{2}^{2}+\frac{26}{3}a_{2}=-\frac{105}{-3}
Divide -26 by -3.
a_{2}^{2}+\frac{26}{3}a_{2}=35
Divide -105 by -3.
a_{2}^{2}+\frac{26}{3}a_{2}+\left(\frac{13}{3}\right)^{2}=35+\left(\frac{13}{3}\right)^{2}
Divide \frac{26}{3}, the coefficient of the x term, by 2 to get \frac{13}{3}. Then add the square of \frac{13}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a_{2}^{2}+\frac{26}{3}a_{2}+\frac{169}{9}=35+\frac{169}{9}
Square \frac{13}{3} by squaring both the numerator and the denominator of the fraction.
a_{2}^{2}+\frac{26}{3}a_{2}+\frac{169}{9}=\frac{484}{9}
Add 35 to \frac{169}{9}.
\left(a_{2}+\frac{13}{3}\right)^{2}=\frac{484}{9}
Factor a_{2}^{2}+\frac{26}{3}a_{2}+\frac{169}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a_{2}+\frac{13}{3}\right)^{2}}=\sqrt{\frac{484}{9}}
Take the square root of both sides of the equation.
a_{2}+\frac{13}{3}=\frac{22}{3} a_{2}+\frac{13}{3}=-\frac{22}{3}
Simplify.
a_{2}=3 a_{2}=-\frac{35}{3}
Subtract \frac{13}{3} from both sides of the equation.