Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2a-b-c\right)\left(-b+c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{\left(2b-c-a\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-b\right)\left(a-c\right) and \left(b-c\right)\left(b-a\right) is \left(a-b\right)\left(a-c\right)\left(-b+c\right). Multiply \frac{2a-b-c}{\left(a-b\right)\left(a-c\right)} times \frac{-b+c}{-b+c}. Multiply \frac{2b-c-a}{\left(b-c\right)\left(b-a\right)} times \frac{a-c}{a-c}.
\frac{\left(2a-b-c\right)\left(-b+c\right)+\left(2b-c-a\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Since \frac{\left(2a-b-c\right)\left(-b+c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)} and \frac{\left(2b-c-a\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)} have the same denominator, add them by adding their numerators.
\frac{-2ab+2ac+b^{2}-bc+cb-c^{2}+2ba-2bc-ca+c^{2}-a^{2}+ac}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Do the multiplications in \left(2a-b-c\right)\left(-b+c\right)+\left(2b-c-a\right)\left(a-c\right).
\frac{2ac+b^{2}-2bc-a^{2}}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Combine like terms in -2ab+2ac+b^{2}-bc+cb-c^{2}+2ba-2bc-ca+c^{2}-a^{2}+ac.
\frac{\left(-a+b\right)\left(a+b-2c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Factor the expressions that are not already factored in \frac{2ac+b^{2}-2bc-a^{2}}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}.
\frac{-\left(a-b\right)\left(a+b-2c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Extract the negative sign in -a+b.
\frac{-\left(a+b-2c\right)}{\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Cancel out a-b in both numerator and denominator.
\frac{-\left(-1\right)\left(a+b-2c\right)}{\left(-a+c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(-a+c\right)\left(-b+c\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-c\right)\left(-b+c\right) and \left(c-b\right)\left(c-a\right) is \left(-a+c\right)\left(-b+c\right). Multiply \frac{-\left(a+b-2c\right)}{\left(a-c\right)\left(-b+c\right)} times \frac{-1}{-1}.
\frac{-\left(-1\right)\left(a+b-2c\right)+2c-b-a}{\left(-a+c\right)\left(-b+c\right)}
Since \frac{-\left(-1\right)\left(a+b-2c\right)}{\left(-a+c\right)\left(-b+c\right)} and \frac{2c-b-a}{\left(-a+c\right)\left(-b+c\right)} have the same denominator, add them by adding their numerators.
\frac{a+b-2c+2c-b-a}{\left(-a+c\right)\left(-b+c\right)}
Do the multiplications in -\left(-1\right)\left(a+b-2c\right)+2c-b-a.
\frac{0}{\left(-a+c\right)\left(-b+c\right)}
Combine like terms in a+b-2c+2c-b-a.
0
Zero divided by any non-zero term gives zero.