Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{\left(2a-b-c\right)\left(-b+c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{\left(2b-c-a\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-b\right)\left(a-c\right) and \left(b-c\right)\left(b-a\right) is \left(a-b\right)\left(a-c\right)\left(-b+c\right). Multiply \frac{2a-b-c}{\left(a-b\right)\left(a-c\right)} times \frac{-b+c}{-b+c}. Multiply \frac{2b-c-a}{\left(b-c\right)\left(b-a\right)} times \frac{a-c}{a-c}.
\frac{\left(2a-b-c\right)\left(-b+c\right)+\left(2b-c-a\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Since \frac{\left(2a-b-c\right)\left(-b+c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)} and \frac{\left(2b-c-a\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)} have the same denominator, add them by adding their numerators.
\frac{-2ab+2ac+b^{2}-bc+cb-c^{2}+2ba-2bc-ca+c^{2}-a^{2}+ac}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Do the multiplications in \left(2a-b-c\right)\left(-b+c\right)+\left(2b-c-a\right)\left(a-c\right).
\frac{2ac+b^{2}-2bc-a^{2}}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Combine like terms in -2ab+2ac+b^{2}-bc+cb-c^{2}+2ba-2bc-ca+c^{2}-a^{2}+ac.
\frac{\left(-a+b\right)\left(a+b-2c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Factor the expressions that are not already factored in \frac{2ac+b^{2}-2bc-a^{2}}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}.
\frac{-\left(a-b\right)\left(a+b-2c\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Extract the negative sign in -a+b.
\frac{-\left(a+b-2c\right)}{\left(a-c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(c-b\right)\left(c-a\right)}
Cancel out a-b in both numerator and denominator.
\frac{-\left(-1\right)\left(a+b-2c\right)}{\left(-a+c\right)\left(-b+c\right)}+\frac{2c-b-a}{\left(-a+c\right)\left(-b+c\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-c\right)\left(-b+c\right) and \left(c-b\right)\left(c-a\right) is \left(-a+c\right)\left(-b+c\right). Multiply \frac{-\left(a+b-2c\right)}{\left(a-c\right)\left(-b+c\right)} times \frac{-1}{-1}.
\frac{-\left(-1\right)\left(a+b-2c\right)+2c-b-a}{\left(-a+c\right)\left(-b+c\right)}
Since \frac{-\left(-1\right)\left(a+b-2c\right)}{\left(-a+c\right)\left(-b+c\right)} and \frac{2c-b-a}{\left(-a+c\right)\left(-b+c\right)} have the same denominator, add them by adding their numerators.
\frac{a+b-2c+2c-b-a}{\left(-a+c\right)\left(-b+c\right)}
Do the multiplications in -\left(-1\right)\left(a+b-2c\right)+2c-b-a.
\frac{0}{\left(-a+c\right)\left(-b+c\right)}
Combine like terms in a+b-2c+2c-b-a.
0
Zero divided by any non-zero term gives zero.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}