Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(a-1\right)}{\left(a-1\right)\left(a+3\right)}-\frac{3a+3}{9-a^{2}}
Factor the expressions that are not already factored in \frac{2a-2}{a^{2}+2a-3}.
\frac{2}{a+3}-\frac{3a+3}{9-a^{2}}
Cancel out a-1 in both numerator and denominator.
\frac{2}{a+3}-\frac{3a+3}{\left(a-3\right)\left(-a-3\right)}
Factor 9-a^{2}.
\frac{2\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{-\left(3a+3\right)}{\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and \left(a-3\right)\left(-a-3\right) is \left(a-3\right)\left(a+3\right). Multiply \frac{2}{a+3} times \frac{a-3}{a-3}. Multiply \frac{3a+3}{\left(a-3\right)\left(-a-3\right)} times \frac{-1}{-1}.
\frac{2\left(a-3\right)-\left(-\left(3a+3\right)\right)}{\left(a-3\right)\left(a+3\right)}
Since \frac{2\left(a-3\right)}{\left(a-3\right)\left(a+3\right)} and \frac{-\left(3a+3\right)}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a-6+3a+3}{\left(a-3\right)\left(a+3\right)}
Do the multiplications in 2\left(a-3\right)-\left(-\left(3a+3\right)\right).
\frac{5a-3}{\left(a-3\right)\left(a+3\right)}
Combine like terms in 2a-6+3a+3.
\frac{5a-3}{a^{2}-9}
Expand \left(a-3\right)\left(a+3\right).
\frac{2\left(a-1\right)}{\left(a-1\right)\left(a+3\right)}-\frac{3a+3}{9-a^{2}}
Factor the expressions that are not already factored in \frac{2a-2}{a^{2}+2a-3}.
\frac{2}{a+3}-\frac{3a+3}{9-a^{2}}
Cancel out a-1 in both numerator and denominator.
\frac{2}{a+3}-\frac{3a+3}{\left(a-3\right)\left(-a-3\right)}
Factor 9-a^{2}.
\frac{2\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{-\left(3a+3\right)}{\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and \left(a-3\right)\left(-a-3\right) is \left(a-3\right)\left(a+3\right). Multiply \frac{2}{a+3} times \frac{a-3}{a-3}. Multiply \frac{3a+3}{\left(a-3\right)\left(-a-3\right)} times \frac{-1}{-1}.
\frac{2\left(a-3\right)-\left(-\left(3a+3\right)\right)}{\left(a-3\right)\left(a+3\right)}
Since \frac{2\left(a-3\right)}{\left(a-3\right)\left(a+3\right)} and \frac{-\left(3a+3\right)}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a-6+3a+3}{\left(a-3\right)\left(a+3\right)}
Do the multiplications in 2\left(a-3\right)-\left(-\left(3a+3\right)\right).
\frac{5a-3}{\left(a-3\right)\left(a+3\right)}
Combine like terms in 2a-6+3a+3.
\frac{5a-3}{a^{2}-9}
Expand \left(a-3\right)\left(a+3\right).