Evaluate
-\frac{1}{2a-1}
Expand
-\frac{1}{2a-1}
Share
Copied to clipboard
\frac{2a-1}{2a}-\frac{2a}{2a-1}-\frac{1}{-2a}
Combine 2a and -4a to get -2a.
\frac{\left(2a-1\right)\left(2a-1\right)}{2a\left(2a-1\right)}-\frac{2a\times 2a}{2a\left(2a-1\right)}-\frac{1}{-2a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a and 2a-1 is 2a\left(2a-1\right). Multiply \frac{2a-1}{2a} times \frac{2a-1}{2a-1}. Multiply \frac{2a}{2a-1} times \frac{2a}{2a}.
\frac{\left(2a-1\right)\left(2a-1\right)-2a\times 2a}{2a\left(2a-1\right)}-\frac{1}{-2a}
Since \frac{\left(2a-1\right)\left(2a-1\right)}{2a\left(2a-1\right)} and \frac{2a\times 2a}{2a\left(2a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}-2a-2a+1-4a^{2}}{2a\left(2a-1\right)}-\frac{1}{-2a}
Do the multiplications in \left(2a-1\right)\left(2a-1\right)-2a\times 2a.
\frac{-4a+1}{2a\left(2a-1\right)}-\frac{1}{-2a}
Combine like terms in 4a^{2}-2a-2a+1-4a^{2}.
\frac{-4a+1}{2a\left(2a-1\right)}-\frac{-\left(2a-1\right)}{2a\left(2a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a\left(2a-1\right) and -2a is 2a\left(2a-1\right). Multiply \frac{1}{-2a} times \frac{-\left(2a-1\right)}{-\left(2a-1\right)}.
\frac{-4a+1-\left(-\left(2a-1\right)\right)}{2a\left(2a-1\right)}
Since \frac{-4a+1}{2a\left(2a-1\right)} and \frac{-\left(2a-1\right)}{2a\left(2a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a+1+2a-1}{2a\left(2a-1\right)}
Do the multiplications in -4a+1-\left(-\left(2a-1\right)\right).
\frac{-2a}{2a\left(2a-1\right)}
Combine like terms in -4a+1+2a-1.
\frac{-1}{2a-1}
Cancel out 2a in both numerator and denominator.
\frac{2a-1}{2a}-\frac{2a}{2a-1}-\frac{1}{-2a}
Combine 2a and -4a to get -2a.
\frac{\left(2a-1\right)\left(2a-1\right)}{2a\left(2a-1\right)}-\frac{2a\times 2a}{2a\left(2a-1\right)}-\frac{1}{-2a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a and 2a-1 is 2a\left(2a-1\right). Multiply \frac{2a-1}{2a} times \frac{2a-1}{2a-1}. Multiply \frac{2a}{2a-1} times \frac{2a}{2a}.
\frac{\left(2a-1\right)\left(2a-1\right)-2a\times 2a}{2a\left(2a-1\right)}-\frac{1}{-2a}
Since \frac{\left(2a-1\right)\left(2a-1\right)}{2a\left(2a-1\right)} and \frac{2a\times 2a}{2a\left(2a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}-2a-2a+1-4a^{2}}{2a\left(2a-1\right)}-\frac{1}{-2a}
Do the multiplications in \left(2a-1\right)\left(2a-1\right)-2a\times 2a.
\frac{-4a+1}{2a\left(2a-1\right)}-\frac{1}{-2a}
Combine like terms in 4a^{2}-2a-2a+1-4a^{2}.
\frac{-4a+1}{2a\left(2a-1\right)}-\frac{-\left(2a-1\right)}{2a\left(2a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a\left(2a-1\right) and -2a is 2a\left(2a-1\right). Multiply \frac{1}{-2a} times \frac{-\left(2a-1\right)}{-\left(2a-1\right)}.
\frac{-4a+1-\left(-\left(2a-1\right)\right)}{2a\left(2a-1\right)}
Since \frac{-4a+1}{2a\left(2a-1\right)} and \frac{-\left(2a-1\right)}{2a\left(2a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a+1+2a-1}{2a\left(2a-1\right)}
Do the multiplications in -4a+1-\left(-\left(2a-1\right)\right).
\frac{-2a}{2a\left(2a-1\right)}
Combine like terms in -4a+1+2a-1.
\frac{-1}{2a-1}
Cancel out 2a in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}