Evaluate
\frac{2\left(-az+6z+a^{2}-18\right)}{\left(a-3\right)\left(z-3\right)}
Factor
\frac{2\left(-az+6z+a^{2}-18\right)}{\left(a-3\right)\left(z-3\right)}
Share
Copied to clipboard
\frac{2a\left(a+3\right)}{\left(z-3\right)\left(a+3\right)}-\frac{2a\left(z-3\right)}{\left(z-3\right)\left(a+3\right)}+\frac{36}{a^{2}-9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of z-3 and a+3 is \left(z-3\right)\left(a+3\right). Multiply \frac{2a}{z-3} times \frac{a+3}{a+3}. Multiply \frac{2a}{a+3} times \frac{z-3}{z-3}.
\frac{2a\left(a+3\right)-2a\left(z-3\right)}{\left(z-3\right)\left(a+3\right)}+\frac{36}{a^{2}-9}
Since \frac{2a\left(a+3\right)}{\left(z-3\right)\left(a+3\right)} and \frac{2a\left(z-3\right)}{\left(z-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a^{2}+6a-2az+6a}{\left(z-3\right)\left(a+3\right)}+\frac{36}{a^{2}-9}
Do the multiplications in 2a\left(a+3\right)-2a\left(z-3\right).
\frac{2a^{2}+12a-2az}{\left(z-3\right)\left(a+3\right)}+\frac{36}{a^{2}-9}
Combine like terms in 2a^{2}+6a-2az+6a.
\frac{2a^{2}+12a-2az}{\left(z-3\right)\left(a+3\right)}+\frac{36}{\left(a-3\right)\left(a+3\right)}
Factor a^{2}-9.
\frac{\left(2a^{2}+12a-2az\right)\left(a-3\right)}{\left(a-3\right)\left(z-3\right)\left(a+3\right)}+\frac{36\left(z-3\right)}{\left(a-3\right)\left(z-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-3\right)\left(a+3\right) and \left(a-3\right)\left(a+3\right) is \left(a-3\right)\left(z-3\right)\left(a+3\right). Multiply \frac{2a^{2}+12a-2az}{\left(z-3\right)\left(a+3\right)} times \frac{a-3}{a-3}. Multiply \frac{36}{\left(a-3\right)\left(a+3\right)} times \frac{z-3}{z-3}.
\frac{\left(2a^{2}+12a-2az\right)\left(a-3\right)+36\left(z-3\right)}{\left(a-3\right)\left(z-3\right)\left(a+3\right)}
Since \frac{\left(2a^{2}+12a-2az\right)\left(a-3\right)}{\left(a-3\right)\left(z-3\right)\left(a+3\right)} and \frac{36\left(z-3\right)}{\left(a-3\right)\left(z-3\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{2a^{3}-6a^{2}+12a^{2}-36a-2a^{2}z+6az+36z-108}{\left(a-3\right)\left(z-3\right)\left(a+3\right)}
Do the multiplications in \left(2a^{2}+12a-2az\right)\left(a-3\right)+36\left(z-3\right).
\frac{2a^{3}+6a^{2}-36a+36z-2a^{2}z+6az-108}{\left(a-3\right)\left(z-3\right)\left(a+3\right)}
Combine like terms in 2a^{3}-6a^{2}+12a^{2}-36a-2a^{2}z+6az+36z-108.
\frac{2\left(a+3\right)\left(-az+6z+a^{2}-18\right)}{\left(a-3\right)\left(z-3\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{2a^{3}+6a^{2}-36a+36z-2a^{2}z+6az-108}{\left(a-3\right)\left(z-3\right)\left(a+3\right)}.
\frac{2\left(-az+6z+a^{2}-18\right)}{\left(a-3\right)\left(z-3\right)}
Cancel out a+3 in both numerator and denominator.
\frac{2\left(-az+6z+a^{2}-18\right)}{az-3z-3a+9}
Expand \left(a-3\right)\left(z-3\right).
\frac{-2az+12z+2a^{2}-36}{az-3z-3a+9}
Use the distributive property to multiply 2 by -az+6z+a^{2}-18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}