Solve for a
a = \frac{22}{3} = 7\frac{1}{3} \approx 7.333333333
Share
Copied to clipboard
6\times 2a-aa=2aa+6a\left(-\frac{5}{3}\right)
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6a, the least common multiple of a,6,3.
6\times 2a-a^{2}=2aa+6a\left(-\frac{5}{3}\right)
Multiply a and a to get a^{2}.
12a-a^{2}=2aa+6a\left(-\frac{5}{3}\right)
Multiply 6 and 2 to get 12.
12a-a^{2}=2a^{2}+6a\left(-\frac{5}{3}\right)
Multiply a and a to get a^{2}.
12a-a^{2}=2a^{2}+\frac{6\left(-5\right)}{3}a
Express 6\left(-\frac{5}{3}\right) as a single fraction.
12a-a^{2}=2a^{2}+\frac{-30}{3}a
Multiply 6 and -5 to get -30.
12a-a^{2}=2a^{2}-10a
Divide -30 by 3 to get -10.
12a-a^{2}-2a^{2}=-10a
Subtract 2a^{2} from both sides.
12a-a^{2}-2a^{2}+10a=0
Add 10a to both sides.
22a-a^{2}-2a^{2}=0
Combine 12a and 10a to get 22a.
22a-3a^{2}=0
Combine -a^{2} and -2a^{2} to get -3a^{2}.
a\left(22-3a\right)=0
Factor out a.
a=0 a=\frac{22}{3}
To find equation solutions, solve a=0 and 22-3a=0.
a=\frac{22}{3}
Variable a cannot be equal to 0.
6\times 2a-aa=2aa+6a\left(-\frac{5}{3}\right)
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6a, the least common multiple of a,6,3.
6\times 2a-a^{2}=2aa+6a\left(-\frac{5}{3}\right)
Multiply a and a to get a^{2}.
12a-a^{2}=2aa+6a\left(-\frac{5}{3}\right)
Multiply 6 and 2 to get 12.
12a-a^{2}=2a^{2}+6a\left(-\frac{5}{3}\right)
Multiply a and a to get a^{2}.
12a-a^{2}=2a^{2}+\frac{6\left(-5\right)}{3}a
Express 6\left(-\frac{5}{3}\right) as a single fraction.
12a-a^{2}=2a^{2}+\frac{-30}{3}a
Multiply 6 and -5 to get -30.
12a-a^{2}=2a^{2}-10a
Divide -30 by 3 to get -10.
12a-a^{2}-2a^{2}=-10a
Subtract 2a^{2} from both sides.
12a-a^{2}-2a^{2}+10a=0
Add 10a to both sides.
22a-a^{2}-2a^{2}=0
Combine 12a and 10a to get 22a.
22a-3a^{2}=0
Combine -a^{2} and -2a^{2} to get -3a^{2}.
-3a^{2}+22a=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-22±\sqrt{22^{2}}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 22 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-22±22}{2\left(-3\right)}
Take the square root of 22^{2}.
a=\frac{-22±22}{-6}
Multiply 2 times -3.
a=\frac{0}{-6}
Now solve the equation a=\frac{-22±22}{-6} when ± is plus. Add -22 to 22.
a=0
Divide 0 by -6.
a=-\frac{44}{-6}
Now solve the equation a=\frac{-22±22}{-6} when ± is minus. Subtract 22 from -22.
a=\frac{22}{3}
Reduce the fraction \frac{-44}{-6} to lowest terms by extracting and canceling out 2.
a=0 a=\frac{22}{3}
The equation is now solved.
a=\frac{22}{3}
Variable a cannot be equal to 0.
6\times 2a-aa=2aa+6a\left(-\frac{5}{3}\right)
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6a, the least common multiple of a,6,3.
6\times 2a-a^{2}=2aa+6a\left(-\frac{5}{3}\right)
Multiply a and a to get a^{2}.
12a-a^{2}=2aa+6a\left(-\frac{5}{3}\right)
Multiply 6 and 2 to get 12.
12a-a^{2}=2a^{2}+6a\left(-\frac{5}{3}\right)
Multiply a and a to get a^{2}.
12a-a^{2}=2a^{2}+\frac{6\left(-5\right)}{3}a
Express 6\left(-\frac{5}{3}\right) as a single fraction.
12a-a^{2}=2a^{2}+\frac{-30}{3}a
Multiply 6 and -5 to get -30.
12a-a^{2}=2a^{2}-10a
Divide -30 by 3 to get -10.
12a-a^{2}-2a^{2}=-10a
Subtract 2a^{2} from both sides.
12a-a^{2}-2a^{2}+10a=0
Add 10a to both sides.
22a-a^{2}-2a^{2}=0
Combine 12a and 10a to get 22a.
22a-3a^{2}=0
Combine -a^{2} and -2a^{2} to get -3a^{2}.
-3a^{2}+22a=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3a^{2}+22a}{-3}=\frac{0}{-3}
Divide both sides by -3.
a^{2}+\frac{22}{-3}a=\frac{0}{-3}
Dividing by -3 undoes the multiplication by -3.
a^{2}-\frac{22}{3}a=\frac{0}{-3}
Divide 22 by -3.
a^{2}-\frac{22}{3}a=0
Divide 0 by -3.
a^{2}-\frac{22}{3}a+\left(-\frac{11}{3}\right)^{2}=\left(-\frac{11}{3}\right)^{2}
Divide -\frac{22}{3}, the coefficient of the x term, by 2 to get -\frac{11}{3}. Then add the square of -\frac{11}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{22}{3}a+\frac{121}{9}=\frac{121}{9}
Square -\frac{11}{3} by squaring both the numerator and the denominator of the fraction.
\left(a-\frac{11}{3}\right)^{2}=\frac{121}{9}
Factor a^{2}-\frac{22}{3}a+\frac{121}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{11}{3}\right)^{2}}=\sqrt{\frac{121}{9}}
Take the square root of both sides of the equation.
a-\frac{11}{3}=\frac{11}{3} a-\frac{11}{3}=-\frac{11}{3}
Simplify.
a=\frac{22}{3} a=0
Add \frac{11}{3} to both sides of the equation.
a=\frac{22}{3}
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}