Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2a}{\left(a-1\right)\left(a+3\right)}+\frac{a^{2}}{2a+3}
Factor a^{2}+2a-3.
\frac{2a\left(2a+3\right)}{\left(a-1\right)\left(a+3\right)\left(2a+3\right)}+\frac{a^{2}\left(a-1\right)\left(a+3\right)}{\left(a-1\right)\left(a+3\right)\left(2a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+3\right) and 2a+3 is \left(a-1\right)\left(a+3\right)\left(2a+3\right). Multiply \frac{2a}{\left(a-1\right)\left(a+3\right)} times \frac{2a+3}{2a+3}. Multiply \frac{a^{2}}{2a+3} times \frac{\left(a-1\right)\left(a+3\right)}{\left(a-1\right)\left(a+3\right)}.
\frac{2a\left(2a+3\right)+a^{2}\left(a-1\right)\left(a+3\right)}{\left(a-1\right)\left(a+3\right)\left(2a+3\right)}
Since \frac{2a\left(2a+3\right)}{\left(a-1\right)\left(a+3\right)\left(2a+3\right)} and \frac{a^{2}\left(a-1\right)\left(a+3\right)}{\left(a-1\right)\left(a+3\right)\left(2a+3\right)} have the same denominator, add them by adding their numerators.
\frac{4a^{2}+6a+a^{4}+3a^{3}-a^{3}-3a^{2}}{\left(a-1\right)\left(a+3\right)\left(2a+3\right)}
Do the multiplications in 2a\left(2a+3\right)+a^{2}\left(a-1\right)\left(a+3\right).
\frac{a^{2}+6a+a^{4}+2a^{3}}{\left(a-1\right)\left(a+3\right)\left(2a+3\right)}
Combine like terms in 4a^{2}+6a+a^{4}+3a^{3}-a^{3}-3a^{2}.
\frac{a^{2}+6a+a^{4}+2a^{3}}{2a^{3}+7a^{2}-9}
Expand \left(a-1\right)\left(a+3\right)\left(2a+3\right).