Evaluate
2
Factor
2
Share
Copied to clipboard
\frac{2a}{a+1}+\frac{\frac{3}{\left(a-1\right)^{2}}-\frac{3}{\left(a-1\right)\left(a+1\right)}}{\frac{3}{a^{2}-2a+1}}
Factor a^{2}-1.
\frac{2a}{a+1}+\frac{\frac{3\left(a+1\right)}{\left(a+1\right)\left(a-1\right)^{2}}-\frac{3\left(a-1\right)}{\left(a+1\right)\left(a-1\right)^{2}}}{\frac{3}{a^{2}-2a+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)^{2} and \left(a-1\right)\left(a+1\right) is \left(a+1\right)\left(a-1\right)^{2}. Multiply \frac{3}{\left(a-1\right)^{2}} times \frac{a+1}{a+1}. Multiply \frac{3}{\left(a-1\right)\left(a+1\right)} times \frac{a-1}{a-1}.
\frac{2a}{a+1}+\frac{\frac{3\left(a+1\right)-3\left(a-1\right)}{\left(a+1\right)\left(a-1\right)^{2}}}{\frac{3}{a^{2}-2a+1}}
Since \frac{3\left(a+1\right)}{\left(a+1\right)\left(a-1\right)^{2}} and \frac{3\left(a-1\right)}{\left(a+1\right)\left(a-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2a}{a+1}+\frac{\frac{3a+3-3a+3}{\left(a+1\right)\left(a-1\right)^{2}}}{\frac{3}{a^{2}-2a+1}}
Do the multiplications in 3\left(a+1\right)-3\left(a-1\right).
\frac{2a}{a+1}+\frac{\frac{6}{\left(a+1\right)\left(a-1\right)^{2}}}{\frac{3}{a^{2}-2a+1}}
Combine like terms in 3a+3-3a+3.
\frac{2a}{a+1}+\frac{6\left(a^{2}-2a+1\right)}{\left(a+1\right)\left(a-1\right)^{2}\times 3}
Divide \frac{6}{\left(a+1\right)\left(a-1\right)^{2}} by \frac{3}{a^{2}-2a+1} by multiplying \frac{6}{\left(a+1\right)\left(a-1\right)^{2}} by the reciprocal of \frac{3}{a^{2}-2a+1}.
\frac{2a}{a+1}+\frac{2\left(a^{2}-2a+1\right)}{\left(a+1\right)\left(a-1\right)^{2}}
Cancel out 3 in both numerator and denominator.
\frac{2a}{a+1}+\frac{2\left(a-1\right)^{2}}{\left(a+1\right)\left(a-1\right)^{2}}
Factor the expressions that are not already factored in \frac{2\left(a^{2}-2a+1\right)}{\left(a+1\right)\left(a-1\right)^{2}}.
\frac{2a}{a+1}+\frac{2}{a+1}
Cancel out \left(a-1\right)^{2} in both numerator and denominator.
\frac{2a+2}{a+1}
Since \frac{2a}{a+1} and \frac{2}{a+1} have the same denominator, add them by adding their numerators.
\frac{2\left(a+1\right)}{a+1}
Factor the expressions that are not already factored in \frac{2a+2}{a+1}.
2
Cancel out a+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}