Solve for a
a\geq 20
Share
Copied to clipboard
4\times 2a-40\geq 5a+20
Multiply both sides of the equation by 20, the least common multiple of 5,4. Since 20 is positive, the inequality direction remains the same.
8a-40\geq 5a+20
Multiply 4 and 2 to get 8.
8a-40-5a\geq 20
Subtract 5a from both sides.
3a-40\geq 20
Combine 8a and -5a to get 3a.
3a\geq 20+40
Add 40 to both sides.
3a\geq 60
Add 20 and 40 to get 60.
a\geq \frac{60}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
a\geq 20
Divide 60 by 3 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}