Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2a}{2\left(a+3\right)}-\frac{a^{2}+9}{a^{2}-9}
Factor the expressions that are not already factored in \frac{2a}{2a+6}.
\frac{a}{a+3}-\frac{a^{2}+9}{a^{2}-9}
Cancel out 2 in both numerator and denominator.
\frac{a}{a+3}-\frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)}
Factor a^{2}-9.
\frac{a\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and \left(a-3\right)\left(a+3\right) is \left(a-3\right)\left(a+3\right). Multiply \frac{a}{a+3} times \frac{a-3}{a-3}.
\frac{a\left(a-3\right)-\left(a^{2}+9\right)}{\left(a-3\right)\left(a+3\right)}
Since \frac{a\left(a-3\right)}{\left(a-3\right)\left(a+3\right)} and \frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-3a-a^{2}-9}{\left(a-3\right)\left(a+3\right)}
Do the multiplications in a\left(a-3\right)-\left(a^{2}+9\right).
\frac{-3a-9}{\left(a-3\right)\left(a+3\right)}
Combine like terms in a^{2}-3a-a^{2}-9.
\frac{3\left(-a-3\right)}{\left(a-3\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{-3a-9}{\left(a-3\right)\left(a+3\right)}.
\frac{-3\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
Extract the negative sign in -3-a.
\frac{-3}{a-3}
Cancel out a+3 in both numerator and denominator.
\frac{2a}{2\left(a+3\right)}-\frac{a^{2}+9}{a^{2}-9}
Factor the expressions that are not already factored in \frac{2a}{2a+6}.
\frac{a}{a+3}-\frac{a^{2}+9}{a^{2}-9}
Cancel out 2 in both numerator and denominator.
\frac{a}{a+3}-\frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)}
Factor a^{2}-9.
\frac{a\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and \left(a-3\right)\left(a+3\right) is \left(a-3\right)\left(a+3\right). Multiply \frac{a}{a+3} times \frac{a-3}{a-3}.
\frac{a\left(a-3\right)-\left(a^{2}+9\right)}{\left(a-3\right)\left(a+3\right)}
Since \frac{a\left(a-3\right)}{\left(a-3\right)\left(a+3\right)} and \frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-3a-a^{2}-9}{\left(a-3\right)\left(a+3\right)}
Do the multiplications in a\left(a-3\right)-\left(a^{2}+9\right).
\frac{-3a-9}{\left(a-3\right)\left(a+3\right)}
Combine like terms in a^{2}-3a-a^{2}-9.
\frac{3\left(-a-3\right)}{\left(a-3\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{-3a-9}{\left(a-3\right)\left(a+3\right)}.
\frac{-3\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
Extract the negative sign in -3-a.
\frac{-3}{a-3}
Cancel out a+3 in both numerator and denominator.