Evaluate
-\frac{3}{a-3}
Expand
-\frac{3}{a-3}
Share
Copied to clipboard
\frac{2a}{2\left(a+3\right)}-\frac{a^{2}+9}{a^{2}-9}
Factor the expressions that are not already factored in \frac{2a}{2a+6}.
\frac{a}{a+3}-\frac{a^{2}+9}{a^{2}-9}
Cancel out 2 in both numerator and denominator.
\frac{a}{a+3}-\frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)}
Factor a^{2}-9.
\frac{a\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and \left(a-3\right)\left(a+3\right) is \left(a-3\right)\left(a+3\right). Multiply \frac{a}{a+3} times \frac{a-3}{a-3}.
\frac{a\left(a-3\right)-\left(a^{2}+9\right)}{\left(a-3\right)\left(a+3\right)}
Since \frac{a\left(a-3\right)}{\left(a-3\right)\left(a+3\right)} and \frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-3a-a^{2}-9}{\left(a-3\right)\left(a+3\right)}
Do the multiplications in a\left(a-3\right)-\left(a^{2}+9\right).
\frac{-3a-9}{\left(a-3\right)\left(a+3\right)}
Combine like terms in a^{2}-3a-a^{2}-9.
\frac{3\left(-a-3\right)}{\left(a-3\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{-3a-9}{\left(a-3\right)\left(a+3\right)}.
\frac{-3\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
Extract the negative sign in -3-a.
\frac{-3}{a-3}
Cancel out a+3 in both numerator and denominator.
\frac{2a}{2\left(a+3\right)}-\frac{a^{2}+9}{a^{2}-9}
Factor the expressions that are not already factored in \frac{2a}{2a+6}.
\frac{a}{a+3}-\frac{a^{2}+9}{a^{2}-9}
Cancel out 2 in both numerator and denominator.
\frac{a}{a+3}-\frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)}
Factor a^{2}-9.
\frac{a\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and \left(a-3\right)\left(a+3\right) is \left(a-3\right)\left(a+3\right). Multiply \frac{a}{a+3} times \frac{a-3}{a-3}.
\frac{a\left(a-3\right)-\left(a^{2}+9\right)}{\left(a-3\right)\left(a+3\right)}
Since \frac{a\left(a-3\right)}{\left(a-3\right)\left(a+3\right)} and \frac{a^{2}+9}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-3a-a^{2}-9}{\left(a-3\right)\left(a+3\right)}
Do the multiplications in a\left(a-3\right)-\left(a^{2}+9\right).
\frac{-3a-9}{\left(a-3\right)\left(a+3\right)}
Combine like terms in a^{2}-3a-a^{2}-9.
\frac{3\left(-a-3\right)}{\left(a-3\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{-3a-9}{\left(a-3\right)\left(a+3\right)}.
\frac{-3\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
Extract the negative sign in -3-a.
\frac{-3}{a-3}
Cancel out a+3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}