Solve for a
\left\{\begin{matrix}a=-\frac{x}{2-b}\text{, }&x\neq 0\text{ and }b\neq 2\\a\neq 0\text{, }&x=0\text{ and }b=2\end{matrix}\right.
Solve for b
b=\frac{x}{a}+2
a\neq 0
Graph
Share
Copied to clipboard
2a+x=ba
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
2a+x-ba=0
Subtract ba from both sides.
2a-ba=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
\left(2-b\right)a=-x
Combine all terms containing a.
\frac{\left(2-b\right)a}{2-b}=-\frac{x}{2-b}
Divide both sides by 2-b.
a=-\frac{x}{2-b}
Dividing by 2-b undoes the multiplication by 2-b.
a=-\frac{x}{2-b}\text{, }a\neq 0
Variable a cannot be equal to 0.
2a+x=ba
Multiply both sides of the equation by a.
ba=2a+x
Swap sides so that all variable terms are on the left hand side.
ab=x+2a
The equation is in standard form.
\frac{ab}{a}=\frac{x+2a}{a}
Divide both sides by a.
b=\frac{x+2a}{a}
Dividing by a undoes the multiplication by a.
b=\frac{x}{a}+2
Divide 2a+x by a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}