Evaluate
-\frac{2}{a}
Expand
-\frac{2}{a}
Share
Copied to clipboard
\frac{2a+b}{a\left(2a-b\right)}-\frac{16a}{\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
Factor 2a^{2}-ab. Factor 4a^{2}-b^{2}.
\frac{\left(2a+b\right)\left(2a+b\right)}{a\left(2a+b\right)\left(2a-b\right)}-\frac{16aa}{a\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(2a-b\right) and \left(2a+b\right)\left(2a-b\right) is a\left(2a+b\right)\left(2a-b\right). Multiply \frac{2a+b}{a\left(2a-b\right)} times \frac{2a+b}{2a+b}. Multiply \frac{16a}{\left(2a+b\right)\left(2a-b\right)} times \frac{a}{a}.
\frac{\left(2a+b\right)\left(2a+b\right)-16aa}{a\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
Since \frac{\left(2a+b\right)\left(2a+b\right)}{a\left(2a+b\right)\left(2a-b\right)} and \frac{16aa}{a\left(2a+b\right)\left(2a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}+2ab+2ab+b^{2}-16a^{2}}{a\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
Do the multiplications in \left(2a+b\right)\left(2a+b\right)-16aa.
\frac{-12a^{2}+b^{2}+4ab}{a\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
Combine like terms in 4a^{2}+2ab+2ab+b^{2}-16a^{2}.
\frac{\left(-6a-b\right)\left(2a-b\right)}{a\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
Factor the expressions that are not already factored in \frac{-12a^{2}+b^{2}+4ab}{a\left(2a+b\right)\left(2a-b\right)}.
\frac{-6a-b}{a\left(2a+b\right)}+\frac{2a-b}{2a^{2}+ab}
Cancel out 2a-b in both numerator and denominator.
\frac{-6a-b}{a\left(2a+b\right)}+\frac{2a-b}{a\left(2a+b\right)}
Factor 2a^{2}+ab.
\frac{-6a-b+2a-b}{a\left(2a+b\right)}
Since \frac{-6a-b}{a\left(2a+b\right)} and \frac{2a-b}{a\left(2a+b\right)} have the same denominator, add them by adding their numerators.
\frac{-4a-2b}{a\left(2a+b\right)}
Combine like terms in -6a-b+2a-b.
\frac{2\left(-2a-b\right)}{a\left(2a+b\right)}
Factor the expressions that are not already factored in \frac{-4a-2b}{a\left(2a+b\right)}.
\frac{-2\left(2a+b\right)}{a\left(2a+b\right)}
Extract the negative sign in -2a-b.
\frac{-2}{a}
Cancel out 2a+b in both numerator and denominator.
\frac{2a+b}{a\left(2a-b\right)}-\frac{16a}{\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
Factor 2a^{2}-ab. Factor 4a^{2}-b^{2}.
\frac{\left(2a+b\right)\left(2a+b\right)}{a\left(2a+b\right)\left(2a-b\right)}-\frac{16aa}{a\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(2a-b\right) and \left(2a+b\right)\left(2a-b\right) is a\left(2a+b\right)\left(2a-b\right). Multiply \frac{2a+b}{a\left(2a-b\right)} times \frac{2a+b}{2a+b}. Multiply \frac{16a}{\left(2a+b\right)\left(2a-b\right)} times \frac{a}{a}.
\frac{\left(2a+b\right)\left(2a+b\right)-16aa}{a\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
Since \frac{\left(2a+b\right)\left(2a+b\right)}{a\left(2a+b\right)\left(2a-b\right)} and \frac{16aa}{a\left(2a+b\right)\left(2a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}+2ab+2ab+b^{2}-16a^{2}}{a\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
Do the multiplications in \left(2a+b\right)\left(2a+b\right)-16aa.
\frac{-12a^{2}+b^{2}+4ab}{a\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
Combine like terms in 4a^{2}+2ab+2ab+b^{2}-16a^{2}.
\frac{\left(-6a-b\right)\left(2a-b\right)}{a\left(2a+b\right)\left(2a-b\right)}+\frac{2a-b}{2a^{2}+ab}
Factor the expressions that are not already factored in \frac{-12a^{2}+b^{2}+4ab}{a\left(2a+b\right)\left(2a-b\right)}.
\frac{-6a-b}{a\left(2a+b\right)}+\frac{2a-b}{2a^{2}+ab}
Cancel out 2a-b in both numerator and denominator.
\frac{-6a-b}{a\left(2a+b\right)}+\frac{2a-b}{a\left(2a+b\right)}
Factor 2a^{2}+ab.
\frac{-6a-b+2a-b}{a\left(2a+b\right)}
Since \frac{-6a-b}{a\left(2a+b\right)} and \frac{2a-b}{a\left(2a+b\right)} have the same denominator, add them by adding their numerators.
\frac{-4a-2b}{a\left(2a+b\right)}
Combine like terms in -6a-b+2a-b.
\frac{2\left(-2a-b\right)}{a\left(2a+b\right)}
Factor the expressions that are not already factored in \frac{-4a-2b}{a\left(2a+b\right)}.
\frac{-2\left(2a+b\right)}{a\left(2a+b\right)}
Extract the negative sign in -2a-b.
\frac{-2}{a}
Cancel out 2a+b in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}